Showing posts with label crops. Show all posts
Showing posts with label crops. Show all posts

Saturday, June 25, 2016

The use of unmanned aerial vehicles to prevent the spread of desert locust swarms

Drones could play an integral role in identifying and preventing desert locust swarms in the fight against this dangerous migratory pest. 

The desert locust is the world's most dangerous migratory pest with a voracious appetite unmatched in the insect world. Within the desert locust's range, which is equivalent to 20% of the earth's land surface, the insects annually reproduce, concentrate and then form swarms that can move up to 150 kilometres per day in search of food.

These swarms are able to migrate across long distances, and can even jump from continent to continent.  A single desert locust swarm the size of Brussels could consume Belgium's entire food supply in a single day.

While desert locust swarms aren't found in the Americas or in Europe, these insects pose a constant threat to food supplies in some of the world's poorest and driest countries, occupying a huge area that stretches from West Africa to the Indian subcontinent. To control these swarms, vulnerable countries use remote sensing technology and ground surveys to identify and eliminate locust breeding areas. Now, some experts think drone technology could provide survey and control teams with an inexpensive and efficient method of searching for these destructive insects.

Early warning system

A global early warning and preventive control system against desert locust has been in place for more than half a century, representing the world's oldest migratory pest warning system. Some two dozen frontline countries have created dedicated national locust centres within their government, consisting of well-trained specialized survey and control teams equipped to scour the desert every day in 4WD vehicles to find and treat infestations.

To find insect infestations, these teams rely on their own knowledge as well as on information from nomads. This knowledge is combined with up-to-date satellite imagery indicating rainfall and green vegetation, allowing the teams to identify potential breeding sites and growing locust infestations. The teams record their observations on a rugged handheld tablet, which transmits the data in real time via satellite to their national locust centre. This information is then passed on to the Desert Locust Information Service (DLIS), based at the headquarters of the Food and Agriculture Organisation (FAO) of the United Nations in Rome, Italy.

The successful prevention of desert locust plagues relies on regular monitoring in the desert, early warning, and timely response. If a local plague is not detected on time it has devastating effects on local livelihoods. For example, it took more than $500 million and two years to control the 2003 and 2005 locust crises in northern Africa. Some 13 million hectares were treated with pesticides. Cereal losses reaching 100% were reported in some areas, and in Mauritania alone, 60% of household heads became indebted. Education levels dropped in Mali, as children were withdrawn from school due to economic pressure.

While the early warning and preventive control system to manage locust plagues is well-established and functions on a daily basis to protect valuable food supplies and livelihoods, it is not perfect. Currently, there are three primary limitations that impact this system: the huge and remote desert areas that must be searched for locust infestations; increasing political insecurity, inaccessibility and dangers within these areas; and the safe use of pesticides during control operations.

High-resolution imagery

The operational use of unmanned aerial vehicles (UAVs) – also known as drones – could potentially overcome these limitations in many affected nations. In the field, UAVs could be used to automatically collect high-resolution imagery of green, vegetated areas potentially affected by locusts. Controlled by a rugged, hand-held tablet, the UAV would follow a pre-programmed flight path, covering a 100 kilometre survey radius.

After the UAV finishes its flight, survey teams would be able to use the data to identify areas that seem most likely to harbour locusts, allowing them to travel directly to suspicious locations. Once the team reaches such an area, the UAV could be launched to hover overhead and identify other, nearby locust infestations that may require treatment. A separate control UAV could then be used to administer pesticides directly onto the locust concentrations. UAVs could also be used to check for locusts in areas that are insecure or cannot be accessed by ground teams.

The above scenario offers a number of advantages, as compared to the survey and control methods currently used in locust-affected countries. Ground surveys would become more efficient, since teams would no longer have to roam the desert in a random manner, hoping to come across suspicious-looking green areas or locust infestations. Instead, UAVs would be able to pinpoint these areas, allowing teams to directly travel to them.

Once in the potentially infested area, the UAV would provide a precise confirmation of the extent and scale of the infestation at that site, which could be several hectares or square kilometres in size. Control operations would become safer and more effective, as human operators would no longer be exposed to potentially dangerous pesticides while eliminating the insects. Pest control operations would also become more effective, since drones would be able to spray infestations precisely, using the correct pesticide dose and methodology.

Remaining challenges

While incorporating UAVs into the existing desert locust early warning and prevention system seems to offer advantages, but several challenges remain. First, an UAV needs to be designed with sufficient endurance to cover at least 100 kilometres in one flight, while carrying optical sensors that can accurately differentiate green annual vegetation from bare ground. The drone system should then be able to process and output these results while in the field. Due to battery and spare parts limitations in developing countries, the UAV should be solar powered, and consist of robust yet simple parts that are easily available in local markets.

The UAV should also be able to accurately detect patches or concentrations of locusts within a single site on a reliable basis. A control UAV will need to be able to balance a potentially bulky pesticide payload with a long flight time, in order to treat the largest number of locust infestations within the greatest amount of area.

Operating both survey and pest control UAVs will have to be simple and intuitive, as users in the field may have only limited expertise and computer skills. Lastly, national governments will need to create legal frameworks that permit the use of drones for locust control operations.

The FAO is currently working with university researchers and private sector partners in Europe to address challenges concerning design, endurance, power, detection of green vegetation and locusts, and in situ data processing in order to incorporate drone technology into national survey and control operations. Initial field trials are expected to commence later this year in Mauritania to test some potential new technology, and to refine and adopt it for eventual operational use in locust-affected countries.

The FAO remains hopeful that within five years, UAVs will play an integral role in protecting food supplies and livelihoods from the desert locust, as part of the fight against global hunger and poverty. It is hoped that this technology and the lessons learned from the desert locust experience can be further modified and adopted for use in combatting other agricultural pests and diseases throughout the world.

About the Author:

Keith Cressman (Keith.Cressman@fao.org) is senior locust forecasting officer at DLIS, FAO in Rome, Italy. He operates FAO’s global desert locust early warning system.

Related Links:


Source:

Republished with permission from ICT Update, issue 82, April 2016

Monday, May 16, 2016

Making sense of drone regulations

Authorities demand regulation for and supervision of the increasing use of drones, because of privacy, safety and security issues. Drone operators must be aware of this. 

While unmanned aerial vehicles (UAV) – also known as drones – are indisputably useful for civilians, the technology has an increasing public relations problem. For example, UK pilots were calling for research into what would happen if a UAV hit an airliner, after 23 near-misses around UK airports in six months during 2015. In Japan, UAVs equipped with a net have been developed to capture rogue UAVs that might threaten disruptions along flight paths. And the Dutch police are experimenting with trained eagles to take unwanted UAVs out of the sky.

Some people are wary of drones due to the technology's association with lethal military technology. Others have seen recent news reports describing the reckless and indiscreet use of UAVs by civilians, from paparazzi drones to unauthorized UAVs flights over tourist hot-spots. These incidents have made governments and citizens around the world raise serious concerns about leaving the technology unregulated.

Image: Walter Volkmann
PhotoThe debate about UAV regulation also concerns developing countries. Some nations, like South Africa, have already implemented regulations on the use of the technology by civilians, while others, like Kenya, have banned the use of UAVs without explicit permission from authorities. Several small island developing states in the Pacific have adopted the regulations formulated by their bigger, more developed neighbours. That is the case for Samoa and Tonga, for example, who follow the UAV laws of New Zealand. Still, many developing countries have no provision at all when it comes to the use of this technology by civilians.

Why rules and standards are necessary

One of the fundamental prerequisites for the use of small UAVs in public airspace is the existence of harmonised rules, in particular for UAV operators. These rules should pertain to safety and training, facilitate cross-country recognition of aircraft and pilot certification. Furthermore, such regulations should be combined with appropriate provisions for the protection of public privacy, data protection, liability and insurance. UAV rules also need standards that apply to both private and commercial use, covering issues such as the identification of types of small UAVs, and development of technologies that can prevent hackers or third parties from taking control of the devices while they are in the air. Clear and concise guidance material, customs procedures, simplified regulations, and readily available online forms and information products, like maps that show where it is allowed or not to use UAVs, could all help to succeed in reducing risks for operators.

The increasing commercial exploitation of smaller drones will require further, specific adjustments, such as limitations on third-party liability, the introduction of UAV weight categories below 500 kilograms, and adjustments to the risk levels that are associated with the flight characteristics of very small UAVs. Some concerns with UAVs are not new: the protection of fundamental civilian rights, such as the privacy of images and data, was already an issue with the use of manned aircraft and helicopters. In this context UAVs represent an increase in the scale of aerial data collection – a new challenge when it comes to strengthening and managing the legal protection of privacy rights and both personal and business data.

The international discussion about regulation of the commercial application of UAVs formally began in 2007 with the creation of an unmanned aerial system study group within the International Civil Aviation Organisation (ICAO). The study group brought to the table several member states and aviation management organizations. In 2011 the study group produced a circular 328, followed in 2015 by a manual on unmanned aircraft systems and proposed amendments to national civil aviation laws.

ICAO's current coordination efforts in the international arena focus almost exclusively on the large remotely-piloted aircrafts used for trans-boundary missions and not on the smaller UAVs. However, much of the material that was prepared by the study group is useful to develop country-specific and regionally relevant regulations for small UAVs under 500 kilograms and with visual line-of-sight operations, as Leslie Cary, who manages ICAO’s programme on drones, said at the Remotely Piloted Aircraft Systems Symposium in March 2015.

The European Aviation Safety Agency (EASA) has been tasked by the European Commission to develop a regulatory framework for drone operations and proposals for the regulation of civil, low-risk drone operations. In achieving this, EASA is working closely with the Joint Authorities for Rulemaking of Unmanned Systems (JARUS), which is producing guidelines that should serve the UAV governance of the national airspaces.

Regulations in ACP countries

Research led by the Technical Centre for Agricultural and Rural Cooperation (CTA) recently examined the current state of drone-related regulations in the African, Caribbean and Pacific (ACP) group of states. It revealed several distinct categories of responses to the drone issue. Indeed, ICAO member states use the organisation's standards and recommended practices and other guidance material to develop their own regulations.

South Africa in particular has implemented and now enforces a comprehensive set of legally-bound rules governing UAVs, placing it among the small group of nations that have working regulations. Others, like Senegal and Kenya, have banned the civilian use of drones or specific airborne tools, such as cameras, although they have amended their aviation laws with drone-related provisions developed by ICAO. Others, like Chad and Gabon, still left notes in their newly updated aviation laws stating that international norms still need to be established on specifics such as certification, licensing and aircraft types. Others have created a variety of forms, guides and information products, and sometimes have simply adopted the UAV rules of another country, without any official amendments to their aviation laws.

In emergency situations, like post cyclone Vanuatu, drones have been used on Efate and Tanna islands for reconnaissance and damage assessment purposes with the endorsement of the government, but in the absence of a legal framework and specific rules. Thus, it appears that the question is no longer whether, but how and when the integration of UAVs into existing forms of aviation will take place. When rules are unclear, professional small UAV operators working in agriculture or natural resource management should use common sense and follow diligence: have an operator permit, documentation and registration for the aircraft and the instrument used, and seek approval from local authorities. Ideally they also should seek approval from customs and national transport agencies.  

Emerging UAV expertise

Tackling safety and privacy issues together with the adoption of harmonised relevant regulation will play a crucial role in the public acceptance of civilian drone technology, and the role of ICAO and JARUS is instrumental in developing the appropriate standards and recommended practices. Regional coordination efforts could spur further harmonisation of national operating rules, licences and certification between neighbouring countries. By doing this they could help the spread of commercial applications and facilitate the growth of regional enterprises and expertise on UAV technology.

ACP countries looking to regulate the technology should consult with professional operators and users of drones to ensure that UAVs’ user cases are well defined and their authorisation streamlined for the relevant activities within the individual countries.

About the Author:

Cédric Jeanneret (cedricj@gmail.com) is a freelance geographer. Cédric is particularly interested in capturing and analysing geographic information to map and learn about the diffusion of innovations and adoption of technology in socio-ecological systems.

Source:

Republished with consent from ICT Update, issue 82, April 2016

Related links:


Follow @UAV4Ag on Twitter