Showing posts with label l'assurance. Show all posts
Showing posts with label l'assurance. Show all posts

Tuesday, May 24, 2016

Assurer plus efficacement les exploitants agricoles indiens en utilisant les drones

Le paiement de l'assurance-récolte pourrait être accéléré grâce à la technologie des drones en vue de prévenir les difficultés financières, et permettre à davantage de petits exploitants agricoles de s'assurer. 

Chaque année, des milliers d'exploitants agricoles indiens se suicident. Ceci s’explique par des conditions météorologiques difficiles, mais aussi parce que leur assurance-récolte, principale protection contre les aléas climatiques, leur a fait faux bond.

Credit: GaryCycles (CC license)
Moins de 23 pour
cent des exploitants indiens sont couverts par une assurance-récolte. Et même ceux qui sont assurés connaissent des difficultés financières générées par des retards de paiement, lesquels sont souvent liés à la lenteur du processus d'évaluation des dommages. Il faut donc beaucoup de temps avant que les assureurs reçoivent des données actualisées et exactes.

Les exploitants indiens doivent recevoir plus rapidement les remboursements au titre des assurances. Le gouvernement central indien a donc lancé un projet pilote d'assurance-récolte axé sur la technologie et nommé « Kisan ». Il fait partie du nouveau régime d'assurance-récolte gouvernemental, Pradhan Mantri Fasal Bima Yojna, que l'on pourrait traduire par « régime d'assurance-récolte du Premier Ministre ».

Système d'assurance-récolte

Le projet pilote Kisan associe des données agricoles collectées par des drones, appelés dans le monde anglophone « véhicules aériens sans pilote (UAV) », des images satellite haute définition, et des données collectées de manière participative à partir des smartphones des exploitants. Ces données peuvent ensuite être combinées avec des méthodes d'évaluation traditionnelles, permettant aux fonctionnaires d'accélérer l'évaluation des dommages touchant les récoltes et d'estimer les rendements avec plus de précision.

Même si l'utilisation des drones par Kisan est à un stade expérimental, les données collectées par les appareils peuvent être utilisées par les analystes agricoles gouvernementaux, les exploitants agricoles et les compagnies d'assurance, en vue d'améliorer le système d'assurance-récolte sous différents aspects. L'imagerie aérienne permet d’identifier les terres cultivées et celles qui ne le sont pas, et d’évaluer l'ampleur des dommages causés par des catastrophes naturelles. Les analystes experts peuvent aussi utiliser les données collectées par les drones sur la topographie et l'altitude afin d’assurer un suivi de l'érosion des sols et concevoir plus efficacement des systèmes de drainage et d'irrigation.

Les analystes agricoles pourraient employer les données de l'indice de végétation par différence normalisée (Normalized Difference Vegetation Index, NDVI) collectées pour mener des enquêtes plus rapides et plus précises quant à la santé des cultures, pour un traitement plus rapide des sinistres. Ils peuvent utiliser les mêmes données pour développer des modèles statistiques de gestion des risques, sur la base des rendements historiques, des nuisibles et des données météorologiques. Les données des drones pourraient également être utiles pour la détection et la prédiction précoce des infestations parasitaires, des données que les compagnies d'assurance pourraient partager avec les exploitants agricoles. Enfin, les données pourraient permettre de détecter les fraudes à l'assurance, empêchant ainsi les fraudeurs d'assurer la même parcelle plusieurs fois ou de réclamer des dommages inexistants.

Interdiction des drones

Les drones ne fonctionneront pas seuls. À l'avenir, les assureurs agricoles recourront certainement à des combinaisons différentes de données provenant de satellites et de drones, éventuellement associées à des méthodes d'analyse traditionnelles afin de générer une image réellement complète des terres agricoles indiennes. Avec ces nouvelles méthodes, les assureurs pourraient proposer un produit de meilleure qualité et plus économique, accessible à davantage d'exploitants agricoles.

Bien que la technologie des drones semble très prometteuse pour les assureurs agricoles indiens, il existe de nombreux défis réglementaires et logistiques à relever. Depuis octobre 2014, les drones sont interdits aux citoyens en Inde. Cette interdiction restera certainement d'actualité tant que la Direction générale de l'Aviation civile (DGCA) indienne n'élaborera pas un système de réglementation des drones commerciaux.

Alors que l'interdiction des drones civils est toujours effective, certaines organisations gouvernementales commencent à en acquérir. Début 2016, le Ministère de l'Agriculture a annoncé qu'il permettrait au Mahalanobis National Crop Forecast Centre (MNCFC) d'acheter des drones pour évaluer les dommages subis par des cultures. À terme, le Ministère de l'Agriculture prévoit d'acheter des drones pour chacun des états indiens afin d'appuyer le programme d'assurance-récolte.

L'immense secteur agricole indien présente un autre obstacle à l'adoption généralisée de l'imagerie par les drones pour l'assurance-récolte. Même s’ils permettent d'accélérer la collecte de données et de la rendre plus économique, de nouveaux modèles commerciaux seront nécessaires pour que l'assurance-récolte soit efficace à une échelle aussi importante.

Il ne sera par conséquent pas toujours facile d'introduire l'imagerie par les drones dans le système d'assurance-récolte indien. Si le projet Kisan est une réussite, davantage d'exploitants agricoles indiens pourront bénéficier de la sérénité qu'apporte une bonne assurance-récolte. Et ils auront beaucoup moins à craindre des mauvaises conditions météorologiques.

À propos de l'auteur :

Ruchit G Garg (Ruchit@harvesting.co) est le fondateur et le directeur général de Harvesting, une entreprise dont le siège se trouve dans la Silicon Valley, aux États-Unis, et qui propose aux exploitants agricoles des informations fondées sur les données.

Source: 

ICT Update #82

Suivez @UAV4Ag sur Twitter