Showing posts with label cartographie. Show all posts
Showing posts with label cartographie. Show all posts

Sunday, June 12, 2016

Les cinq étapes de la création d’une carte au moyen de petits drones

Auparavant, on représentait tous les éléments d’une carte par des symboles dont les caractéristiques spatiales (emplacement, taille, forme) pouvaient être définies mathématiquement dans un système référentiel de coordonnées. On appelait « données vectorielles » les informations spatiales sous-jacentes aux éléments représentés de cette manière. En revanche, depuis l’apparition de la photographie aérienne, on peut désormais également produire des cartes avec des cellules de quadrillage (ou pixels) à chacune desquelles on assigne des valeurs de couleur normalisées, exactement comme pour une image numérique. On appelle « données raster » (ou matricielles) les données utilisées pour produire ce type de carte. Les cartes élaborées à partir des capteurs embarqués à bord des véhicules aériens sans pilote (VASP) ou drones sont dites « sous format matriciel ».

Une carte, au sens traditionnel du terme, doit au minimum répondre aux conditions suivantes : elle doit comporter une échelle et une flèche indiquant le nord, et elle doit offrir un grand degré de cohérence dans la précision des données. De nos jours, au lieu d’utiliser une échelle donnée pour obtenir la résolution souhaitée, les experts utilisent la résolution au sol (Ground sample distance, GSD). Cela représente la largeur et la longueur de la zone couverte au sol par un seul pixel de la mosaïque de capteurs de la caméra. La précision de la carte est donc intimement liée à la GSD. Pour une GSD fixée à 20 centimètres, il ne sera pas possible d’obtenir une mesure des distances entre des points perceptibles au sol plus précise que 20 cm.

Cinq étapes sont nécessaires pour créer une carte au moyen de drones de petite taille :

Étape 1. Conception de la carte et des plans de vol

Afin de s’assurer que la carte sera bien adaptée aux objectifs poursuivis, il importe de déterminer dès le début du processus le type de capteur(s) à utiliser (de lumière visible, de lumière infrarouge, multispectral ou hyperspectral). Une fois le type de capteur déterminé, il faut fixer la GSD adéquate. Plus la résolution au sol diminue et plus la résolution (et la précision) de la carte sera élevée.

Pour évaluer la résolution au sol souhaitée avec un appareil donné, il faut calculer l’altitude de vol correspondante, qui sera fonction de la résolution du ou des capteur(s) et de la distance focale de l’optique de la caméra. La création de cartes à partir d’images doit de plus garantir un recouvrement minimum des photos (exprimé en pourcentage). Pour satisfaire aux exigences en matière de recouvrement, il convient de calculer les intervalles auxquels l’appareil doit se déclencher, ainsi que l’espacement des bandes adjacentes au moyen des dimensions de l’empreinte au sol d’une image.

La Figure 1 illustre le rapport entre, d’une part, la taille et la résolution du capteur ainsi que la distance focale et l’altitude de vol et, d’autre part, la résolution au sol (GSD) et les espacements entre les déclenchements et entre les bandes.

Figure 1 : Paramètres du plan de vol (en mètres)

Par exemple, pour une GSD fixée à 12 millimètres, l’altitude de vol est de 50 mètres, l’appareil doit se déclencher tous les 9,8 mètres dans la bande de vol, et les bandes de vol doivent être espacées de 22 mètres.  
Une fois ces paramètres calculés, on peut mettre au point un plan de vol pour couvrir la zone d’intérêt. Il existe de nombreux outils de conception de plans de vol (gratuits ou payants) pour générer des plans de vol et des plans de tâches numériques de manière quasi automatique qui pourront ensuite être téléchargés sur le drone qui les exécutera alors automatiquement.

Étape 2. Acquisition des images

Afin de permettre l’orientation et la position absolues de la future carte, c’est-à-dire pour géo-référencer cette carte, il est nécessaire de placer sur le terrain des balises de taille et de forme adéquates : ces « Points de contrôle au sol » (PCS) doivent pouvoir être formellement identifiés sur l’imagerie aérienne, et leurs coordonnées dans le système de cartographie de référence souhaité seront mesurées par des méthodes de géomètres.

Dès que les balises PCS sont en place, le plan de vol peut être téléchargé sur le drone pour y être exécuté. Pour un fonctionnement sûr, il convient de procéder à des vérifications de vol et à l’évaluation du terrain avant le lancement du drone. À l’atterrissage, on télécharge le journal de bord et les images aériennes du drone vers un ordinateur portable ou un périphérique de stockage avant de procéder au traitement des images.

Étape 3. Traitement des images 

On associe volontiers la technologie des drones à la production de cartes en haute résolution, mais, sans la technologie de la Structure from Motion (SfM), la révolution cartographique que nous connaissons n’aurait jamais pu avoir lieu. Le degré d’automatisation extrêmement élevé qui caractérise cette technique de cartographie est essentiel pour la démocratisation de la production de cartes.

La première étape de la SfM consiste à aligner les caméras, processus accéléré par l’introduction des positions approximatives des caméras telles qu’enregistrées par le contrôleur de vol du drone. Ces positions approximatives sont également utilisées pour géo-référencer les positions des caméras, ainsi que tous les produits en aval générés par le processus de SfM. Lorsque des PCS (ainsi que leurs coordonnées terrestres) sont nécessaires pour un géoréférencement plus précis, leurs coordonnées-image doivent être visibles dans chaque visuel dans lequel ils apparaissent. Cette étape est généralement la seule intervention manuelle de la procédure de SfM. Dès qu’un modèle de terrain et un atlas de textures ont été produits, on peut générer différents produits géo-spatiaux. En règle générale, sur un ordinateur portable, on peut traiter quelque 500 images de 20MP (couvrant entre 5 et 10 hectares à une résolution au sol entre 10 et 20 millimètres) de grande qualité en l’espace de 24 heures environ.

Étape 4. Préparation et visualisation des produits géo-spatiaux

Une fois le processus de SfM achevé, on peut extraire différents produits géo-spatiaux. Pour une représentation en deux dimensions du terrain, on génère une orthophotographie sur le référentiel et la projection souhaités. On obtient alors une carte raster géo-référencée sans distorsion. Pour ajouter la troisième dimension, on peut générer un modèle altimétrique numérique (MAN) sous format matriciel ou vectoriel. L’association des produits susmentionnés permet des visualisations en 3D extrêmement réalistes, ainsi que des analyses plus ou moins automatiques relatives à la santé de la végétation, la détection de bâtiments, l’évaluation des sols sous l’angle du drainage et de l’irrigation, ou encore au calcul des volumes et de la hauteur des cultures.

Étape 5. L’extraction d’informations essentielles 

Des cartes matricielles véhiculent une quantité impressionnante d’informations, mais la diffusion des volumes de données très importants qu’elles contiennent occuperait une quantité considérable de bande passante. De nombreux logiciels de représentation graphique sont incapables de gérer de tels volumes. Il est donc impératif d’extraire des volumes de données les éléments essentiels pour toute analyse spécifique.

Cette opération est réalisée grâce à l’arpentage virtuel, un processus permettant à l’« arpenteur » de parcourir sans effort le terrain virtuel tout en procédant à des mesures, comme s’il se trouvait sur le terrain. Toutes les données capturées ainsi par l’« arpenteur virtuel » sont sauvegardées sous format vectoriel (format le plus efficace) puis exportées vers un logiciel DAO ou un système d’information géographique (SIG). La possibilité de se livrer à des travaux de topographie virtuels permet d’améliorer considérablement les performances et de réduire les coûts liés aux travaux de cartographie et de topographie. Le travail sur le terrain ne prend plus que quelques heures contre plusieurs semaines auparavant, voire plusieurs mois.

Autres progrès liés à la cartographie par drones

Notons que la cartographie SfM sans PCS est également possible : il suffit alors de connecter un récepteur miniaturisé de système mondial de navigation par satellite (GNSS) à double fréquence à la caméra pour enregistrer le moment précis de chaque déclenchement de l’appareil. De cette manière, les positions de déclenchement peuvent être déterminées de manière très précise, au centimètre près. Certains soutiennent que cette manière de procéder permet de faire l’impasse sur les PCS. De toute évidence, cette nouvelle approche devra faire l’objet de recherches plus approfondies avant de pouvoir convaincre les professionnels de la cartographie.

Enfin, l’émergence de scanners Lidar toujours plus légers constitue un autre progrès important. Le Lidar présente l’avantage unique de pouvoir pénétrer à travers la végétation, ce que n’arrive pas à faire la SfM.

Grâce à ces étapes et ces développements, les cartes numériques peuvent désormais être créées et analysées.

À propos de l’auteur :

Walter Volkmann (walter@unirove.com) préside Micro Aerial Projects L.L.C., une entreprise officielle de mesures géodésiques et cadastrales, spécialisée dans les solutions géo-spatiales.

Source:

Vous pouvez commander une version imprimée ou télécharger une version PDF de ce numéro en suivant ce lien : http://bit.ly/uav4ag-FR

Une sélection d'articles sont proposés sur le portail web du magazine : http://ictupdate.cta.int/fr, où vous pouvez vous abonner à la publication gratuitement.

Thursday, March 24, 2016

Être sur une carte veut dire exister : l'expérience des Saramaca

Les communautés Saramaca du Suriname cherchent la reconnaissance de leur savoir traditionnel par le gouvernement

Le 23 février 2016, 18 représentants de la communauté Saramaca issus des régions de Brownsweg et du cours supérieur du fleuve Suriname ont rencontré des décideurs politiques et des acteurs concernés à Paramaribo, la capitale du Suriname. La rencontre a été organisée par les peuples Saramaka afin de partager les résultats d’un processus de deux ans qui a mené à la visualisation et la documentation de leurs connaissances traditionnelles d’une vaste région.

Cartes générées en utilisant des données extraites d’un modèle 3D participatif à échelle 1:15 000 de la zone de Brownsweg (produites en novembre 2015), combinées à un modèle numérique d’élévation obtenu de la Fondation pour la gestion des forêts et le contrôle de la production, au Suriname.
Ont dit qu'une image vaut mille mots. Dans ce sens, les peuvent en effet être un moyen très efficace de transmettre des messages inhérents à la distribution ou accès aux ressources. En fait, le résultat tangible du processus consistait en une série de cartes physiques et numériques générées par la communauté – des cartes dont les délégués Saramaca se montrèrent très fiers.


Les cartes ainsi que les séries de données connexes furent produites en langue Saramaca, en anglais et en néerlandais lors de trois exercices de modélisation participative en trois dimensions (MP3D) organisés en 2014 et 2015. Les exercices impliquèrent 220 habitants, y compris des femmes, des jeunes et des personnes âgées. Un film documentaire sur le processus fut publié en 2015 en langue Saramaca, en anglais et en français.


Lors de la réunion, les leaders Saramaca ont souligné l'unicité des données que les communautés impliquées sont parvenues à rassembler, à géo-référencer et à visualiser en utilisant des technologies sophistiquées comme les systèmes d'information géographique (SIG). En bénéficiant du soutien de l'extérieur, les détenteurs de savoir ont été à même de partager leurs cartes mentales et leurs souvenirs, des apports fondamentaux pour peupler les modèles en 3D vierges.

Les représentants Saramaca ont attiré l'attention sur la pertinence et la précision des données, ainsi que leur accessibilité à de tierces parties à condition d'obtenir le consentement préalable à leur utilisation. « Nous avons créé cette carte pour qu'elle soit utilisée. Nous voulons que d'autres personnes l'utilisent. La seule chose que nous demandons c'est que les données ne soient pas utilisées sans nous impliquer », soulignait l'un des représentants de la communauté.

Les délégués Saramaca ont encouragé l'utilisation des données à des fins de planification spatiale et ont lancé un appel au gouvernement et aux investisseurs du secteur privé pour que ces derniers reconnaissent les Saramaca en tant que parties prenantes principales et, par conséquent, pour qu'ils les impliquent au maximum dans la planification des exploitations forestières et dans la gestion des zones protégées et des concessions aurifères situées dans le territoire Saramaca traditionnel.

Ils ont également préconisé la reproduction de processus de MP3D dans le reste du territoire Saramaca de façon à générer une carte complète des terres Saramaca traditionnelles. Pour ce faire, ils ont exhorté le gouvernement, les organisations de développement, le secteur privé et les ONG présentes à la réunion à lever les fonds nécessaires.

L'événement était organisé par Tropenbos International Suriname, WWF Guyanas et l'Association des autorités Saramaca. Outre Tropenbos International Suriname, les sponsors du projet comprenaient le Programme de microfinancements du Fonds pour l'environnement mondial (UNDP GEF-SGP) et le CTA. Les contributions de ces organisations ont été dûment reconnues. Les participants ont notamment décrit ces contributions comme du terreau fertile pour l'autonomisation de la communauté à travers la MP3D, un processus très novateur selon eux. Les participants ont également signalé que le processus de MP3D a inspiré d'autres communautés qui sont à présent en train de demander le soutien nécessaire à la mise en œuvre de processus de MP3D dans leurs territoires.

Restez connectés

Suivez @PPGIS sur Twitter ou avec le hashtag #P3DM
Visitez le site web du CTA sur les Systèmes d'information géographique participatifs (SIGP).
Inscrivez-vous au groupe de discussion en ligne sur DGroups (francophone).

Monday, June 06, 2011

La Cartographie Participative: Guide Pour La Production Des Cartes Avec Les Communautés Forestières Dans Le Bassin Du Congo.

Ce guide explique comment les représentants des ONG, des Gouvernements et des communautés participant aux projets de cartographie participative appuyés par la Rainforest Foundation Royaume Unis dans le Bassin du Congo aident les communautés forestières à produire des cartes communautaires qui sont précises et geo-référencées. Il sert de guide méthodologique pour les facilitateurs sur le terrain.
La Rainforest Foundation est une organisation caritative agréée, qui travaille en collaboration étroite avec des associations partenaires locales, afin de développer et soutenir différents projets qui promeuvent une gestion durable des écosystèmes forestiers et la reconnaissance des droits des populations locales. La Rainforest Foundation travaille également en relations étroites avec les Rainforest Foundation Etats-Unis et Norvège. La mission de la Rainforest Foundation Royaume-Uni est d'assister les peuples autochtones et populations traditionnelles des forêts tropicales du monde, et de les aider à protéger leur environnement et à exercer leurs droits. Selon la Foundation Rainforest Royaume-Uni, la protection à long terme des forêts tropicales est inextricablement liée aux droits des populations qui vivent dans ces forêts.



Wednesday, April 27, 2011

Prés de nos ancêtres. Cartographie participative au Gabon



En 2002, Son Excellence, El Hadj Omar Bongo Ondimba, président de la République du Gabon, a crée avec un décret treize parcs nationaux. Les parcs ont été conçus pour représenter différents biomes et les enclaves importantes de la biodiversité dans ce pays du Bassin du Congo.

Cette vidéo, réalisée en 2010, raconte l'expérience des villageois Babongo et Mitsogho qui ont construit une maquette en trois dimensions de leur territoire qui comprend le parc national de Waka dans le massif du Chaillu, la Province de Ngounié. Waka est censé avoir la plus forte densité des primats de la Terre entière, dans une foret Équatoriale montagneuse menace par des concessions forestières. Ce territoire, principalement dans la commune d'Ikobey, abrite également la communauté Babongo, un peuple «Pygmées» de chasseurs-cueilleurs autochtones et leurs voisins, les Mitsogho, un peuple chasseurs-agricoles.

La cartographie participative en 3 dimensions donnait une occasion pour les peuples autochtones et locales a s'engager avec le gouvernement au sujet de leurs droits, la bonne gouvernance et la prise de décision par rapport a l'aire protégée, en utilisant leurs propres langues et la connaissance intime du milieu culturel et naturel. Avec l'appui des ONG nationales et internationales et les organisations des peuples autochtones a travers le bassin du Congo, les villageois Babongo et les Mitsogho ont pu utiliser la carte comme une plate-forme pour parler aux autorités locales et provinciales au sujet de leurs préoccupations et de présenter une vision de la participation et la gouvernance démocratique. La vidéo est un témoignage au défi de la conservation de la biodiversité et le maintien de la diversité culturelle locale, protégées gouvernance zones et les moyens de subsistance. Le projet a été soutenu par MINAPYGA, Brainforest Gabon, Rainforest Royaume-Uni, le CTA et IPACC avec la coopération de la Wildlife Conservation Society (Gabon) et l'Agence nationale des Parcs Nationaux de la République du Gabon.

Monday, November 29, 2010

Localisation, Participation, Communication : Une introduction aux bonnes pratiques en matière de SIGP



Ce documentaire de 25 minutes est une vidéo éducative qui présente la pratique des systèmes participatifs de communication et de gestion de l’information géographique (aussi appelés SIGP) dans le contexte du développement. Il s’adresse aux praticiens du développement (notamment les intermédiaires en technologie) et leur explique comment mettre en œuvre un SIGP piloté par la demande.

Dans cette vidéo, la pratique du SIGP est présentée comme un cycle continu qui débute avec la mobilisation de la communauté dans le cadre de la planification et la conception du projet, le choix des méthodes et technologies cartographiques, puis la visualisation des différentes technologies dans divers contextes ethnoculturels et agro-écologiques pour finalement exploiter les cartes dans les domaines de la construction de l’identité, de l’autodétermination, de la planification spatiale et du plaidoyer.

Des attitudes et des comportements sains et respectueux de l’éthique sont mis en exergue comme des impératifs essentiels à toutes les étapes du processus.

English | Portuguese | Spanish