Monday, August 01, 2016

Participatory 3D Modeling exercise with pastoralist communities in Karamoja, Uganda

The Technical Centre for Agricultural and Rural Cooperation ACP-EU (CTA) in partnership with the International Institute of Rural Reconstruction (IIRR), ERMIS Africa, ESIPPS International Ltd and Vision Care Foundation (VCF) supported the implementation of a ‪Participatory‬ 3D Modelling (‪P3DM‬) exercise in Northern ‪Uganda‬, within the ‪‎Karamoja‬ Cluster.

The process took place in the framework of the larger CTA-funded “Building resilient Pastoral Communities through Cross-border Livestock Value Chains in the IGAD region” project.

The P3DM exercise, and specifically its training component benefits also from support provided by the UNDP Equator Initiative which sponsored the participation of the director of the Oromia Pastoralist Association (OPA).

Other organisations which attended the process for capacity building purposes included Communication without borders (CwB), SIKOM PeaceNet Development and delegates from the Endorois and Kayas peoples from Kenya.

Those interested in the process can see a series of pictures on @PGISatCTA Twitter account.

All tweets related to the event include the hashtag ‪#‎p3dmUG‬ 

More importantly CTA commissioned the production of a documentary related to the process which will be available on www.vimeo.com/channels/pgis

Participatory 3D Modeling exercise with pastoralist communities in Karamoja, Uganda - Start following now!

The Technical Centre for Agricultural and Rural Cooperation ACP-EU (CTA) in partnership with the International Institute of Rural Reconstruction (IIRR), ERMIS Africa, ESIPPS International Ltd and Vision Care Foundation (VCF) is supporting the implementation of a ‪Participatory‬ 3D Modelling (‪P3DM‬) exercise in Northern ‪Uganda‬, within the ‪‎Karamoja‬ Cluster.

Karamoja Village, Northern Uganda (CC credit: Swiss Frog, Flickr)
The process takes place in the framework of the larger CTA-funded “Building resilient Pastoral Communities through Cross-border Livestock Value Chains in the IGAD region” project.

The P3DM exercise, and specifically its training component benefits also from support provided by the UNDP Equator Initiative which has sponsored the participation of the director of the Oromia Pastoralist Association (OPA).

Other organisations attending the process for capacity building purposes include Communication without borders (CwB), SIKOM PeaceNet Development and delegates from the Endorois and Kayas peoples from Kenya.

Those interested in the process should follow the @PGISatCTA Twitter account for daily updates.

All tweets related to the event will include the hashtag ‪#‎p3dmUG‬ 

More importantly CTA commissioned the production of a documentary related to the process which will be available on www.vimeo.com/channels/pgis

Thursday, July 28, 2016

Mapping local knowledge to drive sustainable natural resource management, influence policy-making and promote climate change adaptation

A new publication from the Technical Centre for Agricultural and Rural Cooperation (CTA) illustrates how local communities in a range of developing countries have developed a bird’s-eye perspective of their land and water resources through Participatory 3D modelling (P3DM). This innovative technique is proving a valuable tool for often voiceless groups, helping them to manage and protect their habitats, influence decision-making and take control of their future.

Improving natural resource management, mapping community rights and bolstering climate change adaptation – participatory 3D modelling can help to do all this and more. Developed in the early 1990s in Southeast Asia, the technique offers communities a tangible way of visualising tacit knowledge, producing stand-alone relief models that depict natural surroundings, but also cultural information, helping groups to assert their rights and protect their traditional knowledge from outside exploitation.

CTA has been in the forefront of P3DM development in African, Caribbean and Pacific countries, launching it in Fiji, Gabon, Kenya and Trinidad and Tobago, and helping to foster South-South cooperation to spread the practice further afield. The Power of Maps: Bringing the Third Dimension to the Negotiation Table documents some of the achievements obtained so far. All twelve of the case studies presented show how the process of building 3D maps has led to positive changes.

“Traditional knowledge is gaining recognition at the international level, but at the local level, government officials and technocrats tend to dismiss it as anecdotal and scientifically unproven,” said CTA P3DM expert and Senior Programme Coordinator ICT Giacomo Rambaldi. “The process documented in this book enables knowledge holders to visualise and georeference their traditional knowledge and to engage outsiders in a peer-to-peer dialogue.

Building a P3DM model generally involves the entire community, with the elders supplying their traditional knowledge and children taking charge of the actual construction, using cardboard, paints, pushpins and yarn. An important part of the exercise is the way it brings generations together, giving value to the contributions of each and making people feel a sense of pride – in their surroundings and heritage and in the map itself.

On the Pacific island of Ovalau, a P3DM initiative led farmers and fishers to adopt more sustainable land use and fisheries practices, with significant increases in production as a result. Impacts included a doubling of fish stocks, a sizeable increase in crop output and a rise in the number of tourists visiting the island. In Madagascar, the creation of a 3D map drew an initially sceptical community into a watershed planning process, with people quickly seeing the benefits in terms of improved resource management and income generation.

Members of a pygmy community displaced to make way for a protected area in the Democratic Republic of Congo used the web of knowledge displayed on their 3D map to regain access to traditional lands and claim a role in managing them. Meanwhile, in Kenya, a three-dimensional mapping exercise helped the Ogiek tribe to document its ancestral land rights and knowledge systems, with far-reaching repercussions – including shaping government policy on indigenous peoples.

Climate change poses a special threat to vulnerable small island states, and on the Caribbean island of Tobago, P3DM has been used to guide community driven disaster risk reduction strategies. In another three-dimensional mapping exercise in the region, the experience of building a climate risk map of Grenada has produced the added spin-off of strengthening the capacity and professional networks of local organisations. One unexpected outcome has been the signing of an international partnership to fund the replanting of mangroves, as part of an ecosystem management strategy to protect the island from persistent hurricanes that are endangering lives and livelihoods.

Further information:

Watch The enabling power of participatory 3D mapping among the Saramaccan Peoples of Suriname (part 1 & 2):
Visit CTA’s PGIS website
Read about the life-changing effect of P3DM
Known locations of P3DM exercises in Africa, the Caribbean and the Pacific
Collection of case studies: www.iapad.org

P3DM on social media:

www.facebook.com/ppgis
www.twitter.com/ppgis
www.vimeo.com/channels/pgis
www.ppgis.net

Order or download the publication (at no cost - eligibility criteria apply):

English version

Monday, July 11, 2016

Les systèmes d'irrigation des rizières d'Afrique vus du ciel

La technologie des drones procure aux agriculteurs un moyen économique de planifier l'infrastructure. Au Nigeria, elle a permis d'accélérer la planification, la conception et la construction des systèmes d'irrigation des rizières.  

À mesure que le drone, appelés dans le monde anglophone « véhicules aériens sans pilote (UAV) », réapparaît au loin et perd de l'altitude pour se poser, Richard, le chauffeur de l'équipe de chercheurs qui s'est porté volontaire pour apporter son soutien à la mission, court plein d'enthousiasme vers l'avion sans pilote. « Bienvenue ! » s'écrie-t-il en exultant, à la fois en anglais et en haoussa, la langue parlée dans le nord du Nigeria.

L'équipe growmoreX de la société londonienne GMX Consultancy, gestionnaire d'un service applicatif agricole fondé sur les drones, était présente au Nigeria afin de réaliser une étude préalable au développement d'une exploitation rizicole irriguée de 3 000 hectares. L'exploitation occupera un terrain acquis via un bail à long terme signé avec l'administration publique locale chargée de l'irrigation. L'objectif du projet était d'étudier et de cartographier 7 500 hectares afin de préparer la planification et la construction de l'infrastructure d'irrigation des rizières.

Un aéronef piloté aurait coûté une fortune. La technologie des drones était une alternative bien moins coûteuse. Le site étudié dans le cadre du projet était une région à faible densité de population située environ à 75 kilomètres de la ville de New Bussa. Cette région se caractérise par un accès limité aux routes, à l'électricité, à l'eau potable ainsi qu'à d'autres équipements collectifs. La population y vit principalement de petites exploitations agricoles. Les habitants cultivent tous les ans au cours de la saison des pluies du sorgho, du riz et des haricots. Les tomates poussent pendant la saison sèche, grâce à l'irrigation par pompage.

Le premier vol

Un drone à voilure fixe importé directement des États-Unis a été utilisé pour le premier vol. La journée d'assemblage a donné le temps à l'équipe de résoudre les petits problèmes techniques et de comprendre comment utiliser sa fonction de planification automatique de mission.

Une fois tous les contrôles effectués, l'équipe a réglé le système de navigation du drone sur le mode « automatique ». L'hélice du drone s'est mise à tourner et celui-ci a pris son envol, sous les yeux émerveillés d'une foule qui s'était rassemblée pour observer le premier vol. La mission démarrait.

Bien qu'il ait effectué un bon décollage, le drone commença soudain à s'éloigner au lieu de débuter sa mission préprogrammée, probablement en raison de la direction du vent. L'équipe perdit la communication de télémétrie avec le drone et pensa que le drone s'était écrasé.

Mais soudain, la connexion radio avec le drone se rétablit et il entama sa mission de cartographie automatique. Il ne lui fallut que quelques minutes pour atteindre l'altitude de 150 mètres, considérée comme optimale pour son travail d'étude. Une fois arrivé à cette altitude, il se mit à voler selon une trajectoire spécifique, prenant automatiquement des photos pendant son vol.

Une planification précoce

L'appareil photographique fut contrôlé dès l'arrivée du drone sur le sol. Les photos semblaient nettes et de bonne qualité. Il y en avait beaucoup : au cours du vol de 55 minutes, le drone avait pris des photos superposées de quelque 300 hectares.

Le drone pouvait voler environ quatre heures par jour lorsque le soleil projetait le moins d'ombre possible. Dès lors, l'équipe put cartographier environ 1 000 hectares en une seule journée. Le processus est particulièrement rapide, surtout si l'on tient compte du terrain, des conditions de travail difficiles et des températures élevées. On estime qu'il aurait fallu une vingtaine de jours à un géomètre professionnel travaillant à pied pour couvrir la même surface.

Toutefois, faire appel à un drone nécessite de s'y prendre à l'avance. Les chercheurs se sont d'abord assurés qu'aucun règlement spécifique n'empêchait l'équipe d'utiliser ce type d’appareil. L'émir local, le chef du village, ainsi que les responsables d'un aéroport militaire situé à quelque 100 kilomètres du site étudié avaient été informés du projet. Les autorités locales avaient heureusement accueilli favorablement la nouvelle technologie. Une seule condition avait été imposée : l'émir avait insisté pour que son village soit survolé afin que sa population puisse observer le drone et les photos qu'il prendrait.

Le résultat fut inattendu. Pour la première fois, l'équipe a pu établir le nombre exact de maisons et d'habitations dans le village, permettant ainsi aux chercheurs d'effectuer une estimation bien plus précise de sa population. Cette information sera très utile, car l'équipe chargée de l'étude prévoit d'engager de la main-d'œuvre locale pour construire l'exploitation rizicole et la gérer.

Une hypothèse remise en cause

Aussi magnifique qu'ait été le survol du village, le principal objectif était la planification de l'infrastructure d'irrigation de la rizière. En se basant sur les premières études, les chercheurs devaient créer une carte à l'échelle 1:2 000 (1 centimètre de la carte représente 20 mètres). L'objectif de cette carte était que l'équipe prenne des décisions éclairées concernant la meilleure disposition des champs ainsi que des systèmes d'irrigation et de drainage.

En se fondant sur les informations limitées rassemblées à l'issue de visites précédentes du site, l'hypothèse était qu'il serait possible de disposer les rizières sous forme de vastes bassins rectangulaires. Il aurait fallu d'énormes machines de terrassement et du matériel agricole important pour construire et cultiver ces bassins. Les champs destinés à la culture du riz nécessitent une gestion prudente de l'eau car le niveau de l'eau influence la distribution des mauvaises herbes et des nutriments. Cela signifiait que tous les 100 mètres, 50 cm de terre devaient être éliminés en haut du champ afin de surélever sa partie inférieure au cours du processus de nivellement.

Toutefois, l'étude réalisée par le drone a infirmé cette hypothèse. Même s'il était vrai que certaines parties du site concerné étaient plates, la plus grande partie du terrain était vallonnée.

En raison du terrain en pente et de la finesse de la couche supérieure du sol, l'équipe de chercheurs a dû radicalement modifier son hypothèse et oublier la conception en vastes bassins rectangulaires pour opter pour de longs champs étroits qui suivraient les ondulations du terrain. Ce changement impliquait également une conception très différente du système d'irrigation.

Éviter des frais inutiles

À l'aide des données obtenues grâce à la technologie des drones, les planificateurs agricoles peuvent maintenant éviter plus facilement la mauvaise planification de l'infrastructure. Cette information facilite également l'organisation d'un approvisionnement adéquat en termes de matériel, ce qui permet d'éviter les gros investissements de départ inutiles pouvant mener un projet à l'échec.

L'eau est le facteur essentiel en matière d'autosuffisance rizicole en Afrique, où la culture du riz est principalement pluviale. Le manque d'infrastructures d'irrigation constitue un obstacle majeur à l'augmentation de la production rizicole sur le continent. La plupart des systèmes existants sont mal conçus, mal construits et mal entretenus.

Une bonne nouvelle : la technologie des drones peut accélérer la planification, la conception et la construction de l'infrastructure d'irrigation africaine. Comme ce projet l'a démontré, la technologie des drones pourrait offrir aux agriculteurs un moyen économique de planifier cette infrastructure.

Mais ce n'est pas tout. Après l'étape de planification, les drones pourraient être utiles aux exploitants en vue d'estimer avec plus de précision la quantité de fertilisants et de matériaux de plantation nécessaires pendant la période de végétation. Une fois les cultures plantées, des drones équipés de capteurs spéciaux peuvent surveiller leur croissance.

Avec l'aide des drones agricoles, l'Afrique peut se propulser directement à l'ère de l'agriculture de précision en pleine expansion, tout comme les entreprises africaines de mobilophonie ont court-circuité l'infrastructure traditionnelle des lignes fixes pour créer un système innovant de financement mobile.

À propos de l'auteur :

Quan Le (quan.le@gmx.com) est le directeur général de GMX Agri (www.gmxconsulting.co.uk), une entreprise de conseil, de développement et d'opération axée sur l'agriculture africaine.

Source:

Vous pouvez commander une version imprimée ou télécharger une version PDF de ce numéro en suivant ce lien.

Une sélection d'articles sont proposés sur le portail web du magazine : http://ictupdate.cta.int/fr, où vous pouvez vous abonner à la publication gratuitement.




Sunday, July 10, 2016

A bird’s eye view on Africa’s rice irrigation systems

Drone technology provides agriculturists with a cost-effective method of infrastructure planning. In Nigeria it has accelerated the planning, design and construction of rice irrigation systems.

As the drone reappeared in the sky and lowered its altitude in an attempt to land, the research team’s driver Richard, who had been volunteering to help out with the mission, ran towards the unpiloted plane in jubilation. ‘You’re welcome!’ he said enthusiastically in both English and Hausa, the language that is spoken in northern Nigeria.

The growmoreX team of the London based company GMX Consultancy, which runs a drone-based farming application service, was in Nigeria to do a preliminary assessment for the development of a 3,000 hectares irrigated rice farm. The farm will be built on land that was acquired in a long term lease from the local government’s irrigation authority. The aim of the project was to survey and map a total of 7,500 hectares in preparation of planning and building the irrigation infrastructure for the rice fields.

Although a manned aircraft could have done the job, it also would have cost a fortune. The alternative is unmanned aerial vehicle (UAV) technology. The project site was in a sparsely populated area, located approximately 75 kilometres from the town New Bussa, some 700 kilometres away from the capital Abidjan with limited access to roads, electricity, clean water, and other amenities. Local livelihoods here are mainly based on small-scale agriculture. Crops are grown annually during the rainy season, and include sorghum, rice and beans. Tomatoes are grown during the dry season using pump-fed irrigation.

First flight

A fixed-wing UAV, which was imported directly from the US with assistance from a local project partner, was used for the first flight. It took a day to assemble it. That gave the team time to sort out technical hiccups and figure out how to use its automatic mission planning function. The activity attracted attention from local villagers, who had already been informed about the forthcoming agribusiness development.

When all the checks were completed, the team set the UAV’s navigation system to ‘automatic’. Then the UAV’s propeller was turning and it was launched into the air, witnessed by a crowd of people who had gathered to watch the first flight. The mission had begun.

Although the UAV had made it into the air, it suddenly began to fly away instead of starting its pre-programmed mission – likely due to the direction of the wind. The team lost telemetry communication with the drone, and it was thought that the UAV had crashed.

Suddenly, the radio established a connection with the UAV again, and it finally began its automatic mapping mission. It took the UAV only a few minutes to reach the optimal surveying altitude of 150 metres above ground level. Once at this altitude, it began to fly in a specific pattern, shooting images automatically as it went.

Advance planning

After the UAV landed safely the camera was checked immediately. The photos looked sharp and beautiful. There were a lot of them: during the 55-minute flight, the drone took overlapping photos of nearly 300 hectares of land.

The UAV was able to fly for roughly four hours a day when the sun cast the fewest shadows. This meant that the team was able to map about 1,000 hectares in a single day. That is fast, especially if the harsh terrain and working conditions with high temperatures are considered. Estimations assume that it would have taken a professional surveyor working on foot about twenty days to cover the same area.

To operate an UAV requires advance planning. The researchers made sure no specific regulations barred the team from using the UAV. The local Emir, the village chief and a military airport located about 100 kilometres from the project site were informed of the plans to make use of an UAV. Fortunately, the local authorities welcomed the new technology. There was only one condition: the Emir insisted that we do a flyover of his village, so that his people could see both the drone and the pictures it would take.

The village flyover had an unexpected result. For the first time the team could establish exactly how many houses and dwellings there are in the village, thus enabling researchers to make a much better estimation of its population. This information will be very useful, because the research team is planning to hire local labour to build the rice farm and to run it.

The hypothesis was proved wrong

Wonderful as the village flyover was, the main objective was to begin planning the rice farm’s irrigation infrastructure. For the preliminary investigation, the researchers needed to create a map at a scale of 1:2,000 (1 centimetre on the map represents 20 metres). With such a map the research team could make informed decisions on the best layout of the paddy fields, the irrigation and drainage systems.

Based on the limited information from previous visits to the site, it was hypothesised that it would have been able to lay out the rice fields as large, rectangular basins. Large earth moving and farming machinery would have been needed to build and cultivate those basins. Paddy fields for rice cultivation need careful water management as water levels impact weed and nutrient distribution. This meant that for every 100 metres, half a metre of soil at the top of the field had to be removed to raise its lower end during the levelling process.

However, the drone survey proved the hypothesis wrong. Although it was certainly true that parts of the project site were flat, most of the terrain was an undulating landscape.
The sloping terrain combined with a thin top soil layer led the team of researchers to radically change their designed hypothesis, away from large rectangular basins and towards long, narrow fields that would follow the terrain. But this change also meant that a very different irrigation system design was necessary.

Avoiding unnecessary costs

By using data required from UAV technology, agricultural planners can now easier avoid incorrect infrastructural planning. This information also makes it easier to organise the right procurement of machinery, avoiding unnecessary large upfront investments that can break a project if they are improperly planned.

Water is the deciding factor in Africa’s rice self-sufficiency. Most rice cultivation is rain-fed in Africa. The lack of irrigation infrastructure is a major obstacle to increase rice production on the continent. Most of the existing systems are poorly designed, built, and maintained.

The good news is that UAV technology can potentially accelerate the planning, design and construction of Africa's irrigation infrastructure. As this project has shown, UAV technology could provide agriculturists with a cost-effective method of irrigation infrastructure planning.

And that is not all. After the farm planning stage, UAVs could be useful for farmers to estimate more accurately how much fertilizer and planting materials they will need during the growing season. Once crops have been planted, UAVs equipped with special sensors can monitor their growth.

With the help of agricultural UAVs, Africa can leapfrog into the quickly-advancing area of precision agriculture – just as African mobile phone companies bypassed traditional fixed line infrastructure to create an innovative mobile finance system.

About the author:

Quan Le (quan.le@gmx.com) is managing director of GMX Agri, an Africa-focused agriculture adviser, developer and operator. The firm recently launched growmoreX, an UAV-based farming application service. It collaborates with UAV operators in Africa.

Source:

Republished with permission from ICT Update, issue 82, April 2016

Sunday, June 26, 2016

Prévention de l'extension des essaims de criquets pèlerins

Les drones pourraient jouer un rôle décisif en matière d'identification et de prévention des essaims de criquets pèlerins, dans le cadre de la lutte contre ce migrateur dangereux et nuisible. 

Les criquets pèlerins ont un appétit vorace, au point d'être inégalés dans le monde des insectes. Dans leur zone d'activité, soit 20 pour cent de la surface terrestre, ils se reproduisent annuellement, se regroupent, et forment ensuite des essaims pouvant couvrir jusqu'à 150 kilomètres par jour, passant d'un continent à l'autre.

Alors que les essaims de criquets pèlerins sont inconnus en Amérique et en Europe, ils représentent une menace constante pour les ressources alimentaires de certains des pays les plus pauvres et les plus secs au monde, occupant une surface immense s'étendant de l'Afrique de l'Ouest au sous-continent indien. Les pays vulnérables luttent en faisant appel à une technologie de télédétection et d'étude sur le terrain en vue d'identifier et éliminer les zones de reproduction des criquets. Aujourd'hui, certains experts pensent que la technologie des drones, appelés dans le monde anglophone « véhicules aériens sans pilote (UAV) », pourrait offrir aux équipes d'étude et de lutte une solution économique et efficace.

Système d'alerte précoce

Un système d'alerte précoce et de lutte préventive contre les criquets pèlerins existe depuis plus de cinquante ans. C'est le système d'alerte le plus ancien au monde contre les migrateurs nuisibles. Environ vingt-quatre pays concernés ont créé des centres nationaux de lutte contre les criquets au sein de leur gouvernement, regroupant des équipes d'étude et de lutte spécialisées, bien formées, équipées pour parcourir tous les jours le désert dans des 4x4 afin de trouver et traiter les infestations.

Pour les détecter, ces équipes se fondent sur leur propres connaissances ainsi que sur les informations fournies par les nomades. Ces connaissances sont associées à des images satellite actualisées montrant les précipitations et la végétation, ce qui permet aux équipes d'identifier les sites potentiels de reproduction et les infestations de criquets en cours d'expansion. Les équipes enregistrent leurs observations dans une tablette qui transmet les données en temps réel via satellite à leur centre national de lutte contre les criquets. Cette information est ensuite transmise au Desert Locust Information Service (DLIS), installé au siège de l'Organisation des Nations Unies pour l’alimentation et l’agriculture (ONUAA) à Rome, en Italie.

La réussite de la prévention des invasions de criquet pèlerin se fonde sur une surveillance régulière dans le désert, des alertes précoces, et une réaction rapide. Si une invasion n'est pas détectée à temps, cela peut avoir un effet dévastateur sur la subsistance de la population locale. Il a par exemple fallu plus de 500 millions USD et deux années pour contrôler les crises acridiennes de 2003 et 2005 en Afrique du Nord. Quelque 13 millions d'hectares ont été traités avec des pesticides. En ce qui concerne les céréales, des pertes de 100 pour cent ont été rapportées dans certaines régions, et rien qu'en Mauritanie, 60 % des chefs de famille ont dû s'endetter. Au Mali, le niveau d'éducation a chuté car les enfants ont été retirés des écoles en raison de la mauvaise situation économique de leurs parents.

Même si le système d'alerte précoce et de lutte préventive est bien établi et reste efficace au jour le jour, il n'est pas parfait. Actuellement, trois obstacles fondamentaux ont un impact sur ce système : l'énorme étendue et l'éloignement des régions désertiques à explorer, l'insécurité politique croissante, l'inaccessibilité ainsi que les dangers dans ces régions, et enfin l'utilisation fiable des pesticides au cours des opérations de lutte.

Images en haute résolution

L'utilisation de drones pourrait permettre de lever ces obstacles dans de nombreux pays affectés. Sur le terrain, on pourrait utiliser les drones pour collecter automatiquement des images en haute résolution de zones de végétation potentiellement affectées. Commandé par une tablette portative robuste, le drone suivrait un plan de vol préprogrammé couvrant un rayon de 100 kilomètres.

Au terme du vol, les équipes chargées de l'étude pourraient exploiter les données collectées pour identifier les zones les plus susceptibles d'abriter des criquets, ce qui leur permettrait de se rendre directement sur place. Une fois que l'équipe atteint une zone suspecte, le drone pourrait la survoler et identifier d'autres zones proches et nécessitant un traitement. On pourrait ensuite utiliser un drone de lutte séparé pour répandre les pesticides directement sur les concentrations de criquets. Les drones pourraient encore être utilisés pour vérifier la présence de criquets dans des zones peu sûres ou inaccessibles par les équipes de terrain.

Cette solution présente bien des avantages comparée aux méthodes d'étude et de lutte employées actuellement dans les pays touchés par les invasions de criquets. Les études du terrain seraient plus efficaces puisque les équipes ne devraient plus parcourir le désert à l'aveugle en espérant tomber sur des zones de végétation suspectes ou des invasions de criquets.  Les drones permettraient au contraire d'identifier ces zones, ce qui donnerait la possibilité aux équipes d'étude de s'y rendre directement.

Une fois sur place, le drone donnerait une confirmation précise de l'étendue et de la gravité de l'invasion du site. Les opérations de lutte seraient plus sûres et plus efficaces car des opérateurs humains ne seraient plus exposés à des pesticides potentiellement dangereux lors de l'élimination des insectes. Les opérations de lutte contre les parasites deviendraient aussi plus efficaces parce que les drones seraient capables de traiter précisément les invasions, avec la bonne dose de pesticides et la bonne méthode.

Défis à relever

L'introduction des drones dans le système existant §d'alerte précoce et de prévention présente bien des avantages, mais il reste des défis à relever. Il faut d'abord concevoir un drone suffisamment endurant pour couvrir au moins 100 kilomètres en un seul vol, tout en étant chargé de détecteurs optiques capables de différencier une végétation annuelle d'un sol nu. Le système du drone devra ensuite pouvoir traiter et produire les résultats sur le terrain. Étant donné les limitations relatives aux batteries et aux pièces détachées dans les pays en développement, le drone devra fonctionner à l'énergie solaire et être composé de pièces robustes mais simples, facilement disponibles sur les marchés locaux.

Le drone devra aussi pouvoir détecter avec exactitude et fiabilité des taches ou concentrations de criquets sur un site. Un drone de lutte devra pouvoir associer une charge de pesticide potentiellement lourde et une durée de vol relativement longue en vue de traiter le plus possible d'invasions de criquets sur la surface la plus étendue possible.

La commande des drones d'étude et de lutte devra être simple et intuitive car les utilisateurs de terrain disposeront peut-être d’une expertise et de compétences informatiques limitées. Les gouvernements nationaux devront enfin élaborer des cadres juridiques permettant l'utilisation de drones pour des opérations de lutte contre les criquets.

L'ONUAA collabore actuellement avec des chercheurs universitaires et des partenaires du secteur privé en Europe pour répondre à des défis concernant la conception, l'endurance, la puissance, la détection de végétation et de criquets, et le traitement sur place des données en vue d'intégrer la technologie des drones dans les opérations nationales d'étude et de lutte. On s'attend à ce que les premiers essais sur le terrain débutent cette année en Mauritanie pour tester de nouvelles technologies potentielles, les perfectionner, et les adopter en vue d'une utilisation opérationnelle potentielle dans les pays touchés par les invasions de criquets.

L'ONUAA espère que d'ici cinq ans les drones joueront un rôle décisif dans la protection des denrées alimentaires et des moyens de subsistance contre le criquet pèlerin dans le cadre de la lutte contre la faim et la pauvreté mondiales. Cette technologie et les enseignements tirés de l'expérience avec le criquet pèlerin devraient pouvoir être modifiés et adoptés dans le combat contre d'autres maladies et parasites agricoles de par le monde.

À propos de l'auteur :

Keith Cressman (Keith.Cressman@fao.org) est le fonctionnaire principal en charge des prévisions acridiennes au sein du DLIS, ONUAA à Rome, en Italie. Il s'occupe du système global d'alerte précoce acridienne de l'ONUAA.

Liens connexes :



Source:

Vous pouvez commander une version imprimée ou télécharger une version PDF de ce numéro en suivant ce lien.

Une sélection d'articles sont proposés sur le portail web du magazine : http://ictupdate.cta.int/fr, où vous pouvez vous abonner à la publication gratuitement.