Monday, May 16, 2016

Making sense of drone regulations

Authorities demand regulation for and supervision of the increasing use of drones, because of privacy, safety and security issues. Drone operators must be aware of this. 

While unmanned aerial vehicles (UAV) – also known as drones – are indisputably useful for civilians, the technology has an increasing public relations problem. For example, UK pilots were calling for research into what would happen if a UAV hit an airliner, after 23 near-misses around UK airports in six months during 2015. In Japan, UAVs equipped with a net have been developed to capture rogue UAVs that might threaten disruptions along flight paths. And the Dutch police are experimenting with trained eagles to take unwanted UAVs out of the sky.

Some people are wary of drones due to the technology's association with lethal military technology. Others have seen recent news reports describing the reckless and indiscreet use of UAVs by civilians, from paparazzi drones to unauthorized UAVs flights over tourist hot-spots. These incidents have made governments and citizens around the world raise serious concerns about leaving the technology unregulated.

Image: Walter Volkmann
PhotoThe debate about UAV regulation also concerns developing countries. Some nations, like South Africa, have already implemented regulations on the use of the technology by civilians, while others, like Kenya, have banned the use of UAVs without explicit permission from authorities. Several small island developing states in the Pacific have adopted the regulations formulated by their bigger, more developed neighbours. That is the case for Samoa and Tonga, for example, who follow the UAV laws of New Zealand. Still, many developing countries have no provision at all when it comes to the use of this technology by civilians.

Why rules and standards are necessary

One of the fundamental prerequisites for the use of small UAVs in public airspace is the existence of harmonised rules, in particular for UAV operators. These rules should pertain to safety and training, facilitate cross-country recognition of aircraft and pilot certification. Furthermore, such regulations should be combined with appropriate provisions for the protection of public privacy, data protection, liability and insurance. UAV rules also need standards that apply to both private and commercial use, covering issues such as the identification of types of small UAVs, and development of technologies that can prevent hackers or third parties from taking control of the devices while they are in the air. Clear and concise guidance material, customs procedures, simplified regulations, and readily available online forms and information products, like maps that show where it is allowed or not to use UAVs, could all help to succeed in reducing risks for operators.

The increasing commercial exploitation of smaller drones will require further, specific adjustments, such as limitations on third-party liability, the introduction of UAV weight categories below 500 kilograms, and adjustments to the risk levels that are associated with the flight characteristics of very small UAVs. Some concerns with UAVs are not new: the protection of fundamental civilian rights, such as the privacy of images and data, was already an issue with the use of manned aircraft and helicopters. In this context UAVs represent an increase in the scale of aerial data collection – a new challenge when it comes to strengthening and managing the legal protection of privacy rights and both personal and business data.

The international discussion about regulation of the commercial application of UAVs formally began in 2007 with the creation of an unmanned aerial system study group within the International Civil Aviation Organisation (ICAO). The study group brought to the table several member states and aviation management organizations. In 2011 the study group produced a circular 328, followed in 2015 by a manual on unmanned aircraft systems and proposed amendments to national civil aviation laws.

ICAO's current coordination efforts in the international arena focus almost exclusively on the large remotely-piloted aircrafts used for trans-boundary missions and not on the smaller UAVs. However, much of the material that was prepared by the study group is useful to develop country-specific and regionally relevant regulations for small UAVs under 500 kilograms and with visual line-of-sight operations, as Leslie Cary, who manages ICAO’s programme on drones, said at the Remotely Piloted Aircraft Systems Symposium in March 2015.

The European Aviation Safety Agency (EASA) has been tasked by the European Commission to develop a regulatory framework for drone operations and proposals for the regulation of civil, low-risk drone operations. In achieving this, EASA is working closely with the Joint Authorities for Rulemaking of Unmanned Systems (JARUS), which is producing guidelines that should serve the UAV governance of the national airspaces.

Regulations in ACP countries

Research led by the Technical Centre for Agricultural and Rural Cooperation (CTA) recently examined the current state of drone-related regulations in the African, Caribbean and Pacific (ACP) group of states. It revealed several distinct categories of responses to the drone issue. Indeed, ICAO member states use the organisation's standards and recommended practices and other guidance material to develop their own regulations.

South Africa in particular has implemented and now enforces a comprehensive set of legally-bound rules governing UAVs, placing it among the small group of nations that have working regulations. Others, like Senegal and Kenya, have banned the civilian use of drones or specific airborne tools, such as cameras, although they have amended their aviation laws with drone-related provisions developed by ICAO. Others, like Chad and Gabon, still left notes in their newly updated aviation laws stating that international norms still need to be established on specifics such as certification, licensing and aircraft types. Others have created a variety of forms, guides and information products, and sometimes have simply adopted the UAV rules of another country, without any official amendments to their aviation laws.

In emergency situations, like post cyclone Vanuatu, drones have been used on Efate and Tanna islands for reconnaissance and damage assessment purposes with the endorsement of the government, but in the absence of a legal framework and specific rules. Thus, it appears that the question is no longer whether, but how and when the integration of UAVs into existing forms of aviation will take place. When rules are unclear, professional small UAV operators working in agriculture or natural resource management should use common sense and follow diligence: have an operator permit, documentation and registration for the aircraft and the instrument used, and seek approval from local authorities. Ideally they also should seek approval from customs and national transport agencies.  

Emerging UAV expertise

Tackling safety and privacy issues together with the adoption of harmonised relevant regulation will play a crucial role in the public acceptance of civilian drone technology, and the role of ICAO and JARUS is instrumental in developing the appropriate standards and recommended practices. Regional coordination efforts could spur further harmonisation of national operating rules, licences and certification between neighbouring countries. By doing this they could help the spread of commercial applications and facilitate the growth of regional enterprises and expertise on UAV technology.

ACP countries looking to regulate the technology should consult with professional operators and users of drones to ensure that UAVs’ user cases are well defined and their authorisation streamlined for the relevant activities within the individual countries.

About the Author:

Cédric Jeanneret (cedricj@gmail.com) is a freelance geographer. Cédric is particularly interested in capturing and analysing geographic information to map and learn about the diffusion of innovations and adoption of technology in socio-ecological systems.

Source:

Republished with consent from ICT Update, issue 82, April 2016

Related links:


Follow @UAV4Ag on Twitter

Le dernier numéro d'ICT Update est sorti : Les drones au service de l'agriculture

L'utilisation de véhicules aériens sans pilote, ou drones, pour la gestion des cultures, des cheptels, des pêches, des forêts et d'autres activités basées sur des ressources naturelles représente le franchissement d'une nouvelle frontière technologique et ouvre la voie à toute une série d'opportunités enthousiasmantes.



Le dernier numéro d'ICT Update, un magazine bimensuel publié par le Centre technique de coopération agricole et rurale ACP-UE (CTA), est consacré à l'utilisation de cette technologie et de systèmes connexes dans différentes parties du monde.  Le numéro, disponible en ligne et en version imprimée en français et en anglais, est publié en collaboration avec Esri.

Il contient 12 articles, une interview et une sélection de diverses ressources en ligne sur le sujet.  Les articles traitent notamment de l'utilisation des drones pour concevoir un système d'irrigation au Nigéria, pour alimenter un système de surveillance des sauterelles, pour récolter des preuves d'occupation illégale de terres au Panama, ou encore pour aider des petits producteurs à superviser leurs cultures en Afrique de l'Est.

Vous pouvez commander une version imprimée ou télécharger une version PDF de ce numéro en suivant ce lien : http://bit.ly/uav4ag-FR

Une sélection d'articles sont proposés sur le portail web du magazine : http://ictupdate.cta.int/fr, où vous pouvez vous abonner à la publication gratuitement.

Thursday, May 05, 2016

Sri Lanka's drone pioneers

The International Water Management Institute (IWMI) in Sri Lanka has begun to experiment with drone technology to support a wide range of studies like crop monitoring, disaster mitigation and disease prevention.

In recent months, the Colombo based International Water Management Institute (IWMI) has begun to use unmanned aerial vehicles (UAVs) – also known as drones – to monitor rice crops in and around the water scarce area of Anuradhapura. The institute is testing the data-collecting capabilities of UAVs for various purposes. For example, RGB (red, green, blue) colour and near-infrared (NIR) sensors were used to capture images over the paddy fields. These technologies have the potential to help farmers detect fields that are under stress and to help them identify low-laying areas prone to pooling.

IWMI's drone is also regularly used in partnership with local authorities. In December 2015, the Survey Department of Sri Lanka was developing a disaster mitigation plan for Badulla, the capital city of Uva Province. The Survey Department needed a high-resolution Digital Elevation Model (DEM) of the town for the plan, and asked IWMI to use its drone to capture the required aerial imagery.

Using conventional techniques, it might have taken over a year to survey the town. However, the drone used by the IWMI team was able to survey the entire 10 square kilometres area in just three days, by carrying out fourteen UAV flights and shooting 4,600 high-resolution images, with an average spatial resolution of four centimetres.

Disease prevention


Drone imagery can also be used to better understand the spread of disease, allowing health analysts to create high-quality maps. Chronic Kidney Disease of Uncertain Aetiology (CKDu) is one of the most serious non-communicable diseases presently afflicting Sri Lankans, and it remains poorly understood. First diagnosed in the mid-1990s, the disease has now been found to occur in six out of the nine Sri Lankan provinces. It is essentially confined to the dry zone and only affects farmers engaged in rice cultivation. CKDu is believed to have resulted in the death of approximately 25 thousand people to date, while over 8 thousand people are currently estimated to be receiving treatment for the condition.

In the CKDu-affected area of Mahiyangana, the disease is believed to be spread via contaminated drinking water, which originates from wells. The UAV has been used to gather geo-referenced data on where households live and where wells are located. The collected data can be used in addition to a digital elevation model to locate the high and low areas of two villages, Sara Bhoomi and Badulupura.

The gathered data has been used in support of a pilot project on prevention of CKDu in the area. According to project leader Ranjith Mulleriyawa, these aerial photos and maps have provided researchers with an improved overall picture of the area, helping them understand how contaminated wells are linked to the spread of CKDu in affected areas.

High accuracy


IWMI also plans drone initiatives in Nepal to map fresh water springs by using a small thermal sensor. The targeted watersheds in Nepal have dense canopy cover, and it is difficult to use standard optical sensors to identify and locate the springs. The drone-mounted thermal sensor can see through the dense canopy cover to find these springs, as their temperature is lower than the temperature of the earth surrounding them.

While the use of UAVs in research and other practical applications remains in its infancy, IWMI’s initial tests have already demonstrated their usefulness. Drones can be used to carry out surveys over large and hard-to-access areas, in a relatively short timeframe and with high accuracy. For policy experts and decision-makers, these aerial images can provide them with more accurate and up-to-date information than has hitherto been possible. For farmers, high-quality drone images can help them detect potential crop failure early, giving them enough time to respond.

IWMI thinks that UAV based surveys will be especially useful in studies that require highly accurate and repeated monitoring. These include checking for changes in cropping patterns, shifts in the status of important water resources, and documenting the extent of environmental disasters. It doubtless won't be long before farmers routinely use UAVs to monitor their crops, just as they use more conventional machinery to sow and harvest.

About the author:


Salman Siddiqui (S.Siddiqui@cgiar.org) is senior manager of the Geographic Information System (GIS), remote sensing and data management unit at the International Water Management Institute in Sri Lanka.

Source:

Republished with consent from http://ictupdate.int

Sunday, May 01, 2016

Inspiring speech by Hindou Oumarou Ibrahim at the Signing of the Paris Climate Change Agreement




PARIS, 22 April 2016 - UN Secretary-General Ban Ki-moon invited all world leaders to a signing ceremony on 22 April at UN Headquarters for the historic climate agreement that was reached in Paris in December last year. At the request of the Executive Office of the Secretary-General, UN-NGLS led a process for civil society to apply to attend or speak during the opening session of the signing ceremony, involving facilitation of a civil society Selection Committee, who reviewed more than 200 applications received. Ultimately, Ms. Hindou Oumarou Ibrahim from the Association des Femmes Peules Autochtones du Tchad (AFPAT) in Chad was selected as the civil society speaker for the opening ceremony of the event.

Hindou is a member of the Executive committee of the Indigenous Peoples of Africa Coordinating Committee (IPACC), for which she is a representative of the Congo Basin Region, with a background in indigenous peoples' rights and environment protection with the three Rio Conventions (Biodiversity, Climate Change and Desertification) with multiple responsibilities.

She has organized a series of international workshops on scientific and traditional knowledge systems in partnership with UNESCO, IPACC, CTA, CI and the government of Chad.

Below is the last of a series of three film productions concerning Hindou's the activities centred on merging traditional and scientific knowledge systems and related participatory three-dimensional mapping (P3DM) activities in Chad.

Three-way dialogue on climate change from CTA on Vimeo.

Among the many bus stations of N’djamena the capital city of Chad, travellers coming from the countryside know where to unpack their concerns. The path of Aladji Ibrahim leads to AFPAT, an organisation which represents the rights of Indigenous Peoples, in this case the Bororo herders. Here is where the story starts, a deeply touching one. A story centred around climate change adaptation, where the manufacturing and use of a 3 dimensional model helps bridging the gap between traditions and modernism, local producers and government officials, village elders and scientists, local communities and public powerhouses. Last but not least this film documents how participatory three-dimensional mapping (P3DM) can facilitate the management and mitigation of conflicts over shared natural resources. It shows also that P3DM can support the promotion of human rights and represent a formidable medium for facilitating dialogue among development partners.

French version of the film.

Other film productions part of the series:

Dangers in the bush, map of good faith: https://vimeo.com/53836701
Climate Governance: A matter of survival for nomadic pastoralists: https://vimeo.com/37458698

Further reading:

__________ 2012. Influencing regional policy processes in Climate Change Adaptation through the interaction of African pastoralist traditional knowledge and meteorological science; A Contribution to the Nairobi Work Programme on Impacts, Vulnerability and Adaptation. IPACC. 22 pg, September 2012

Documenting illegal land occupancy using drones

Unmanned aerial vehicles have the potential to empower indigenous communities to become equal partners in the efforts to safeguard their territories and natural resources. 

Throughout the Americas, indigenous forest communities’ territories face intensifying threats, as global demand increases for land and forest resources. Non-indigenous settlers and loggers illegally enter indigenous territories to poach valuable timber or to burn and clear large swaths of forest.  Emerging technologies, such as unmanned aerial vehicles (UAVs) – also known as drones – offer an unprecedented opportunity to empower communities to defend their territories and natural resources. UAV technology allows them to monitor their land in real time, obtain visual evidence of any trespass, and make claims based on this evidence.

Some of Panama’s indigenous communities already make use of UAVs to protect the rainforest. Nearly 70% of Panama’s remaining intact rainforest is governed by indigenous peoples. Indigenous communities see the forest as part of their culture and heritage, respecting and understanding its value and safeguarding it for future generations. Newcomers to the area tend to see the rainforest as something to be exploited in the short-term, particularly for felling valuable old-growth hardwoods and clearing forested areas for cattle ranching.

Panama’s indigenous communities began using UAVs in 2015 with the support of the Rainforest Foundation US and Tushevs Aerials. Tushevs Aerials is a small organisation that designs and builds UAVs and processes data into maps or digital 3D models. It provides training in any aspect of UAV construction, operation, and data use. Since the beginning of this project UAVs have successfully been used to document illegitimate land occupancy and illegal land occupancy and illegal logging by non-indigenous groups.


Armed settlers

The rampant deforestation in the Darien region of Panama perfectly illustrates this dynamic. Islands of rainforest have managed to resist outside pressure from settlers, thanks to the indigenous communities that inhabit and protect them. With the use of a custom-built fixed wing UAV, the Emberá peoples – near the community of Puerto Indio – could spot and survey over 200 hectares of converted forest that has been illegally occupied by cattle ranchers. The communities’ leaders were stunned to witness the extent of the damage. Prior to seeing the aerial imagery, they had thought that there were only about 50 hectares destroyed by illegal ranching.

The occupation and conversion of forested areas occurred several kilometres away from where the indigenous community lives. But because of tensions with the settlers, who are often armed and confrontational, they had not been able to enter the area and document the illegal ranching practices. Using the UAV allowed them to quickly and safely gather data that evidenced the trespass of their territories.

Tino Quintana, the cacique or traditional chief of the 440,000 hectares’ traditional territory, took the lead on presenting the results of the UAV survey to members of several other Emberá communities. These communities are now working together by using aerial imagery documentation to register official complaints with the regional authorities. The government has promised to remove the settlers, and the Emberá communities plan to reforest the area.

Documenting evidence

Governments are often faced with resource shortages, and are frequently unable to respond to all requests for intervention.  Spatially explicit UAV documentation of illegal logging and land occupancy helps government agencies prioritise their efforts, ensuring that a week-long field inspection will collect enough evidence to justify government intervention.

This experience generated further interest in UAV technology among indigenous communities in eastern Panama, inspiring other leaders to ask for UAV support. The Emberá and Wounaan General Congress, which oversees thousands of hectares of rainforest across 27 distinct territories, was given a DJI Phantom 3 Professional quadcopter by the Rainforest Foundation in November 2015. Wounaan leaders flew this UAV within the district of Platanares on the Pacific coast of Panama. The geo-referenced images proved that 10 hectares had recently been burned for cattle grazing in the middle of their territory.


Diogracio Puchicama, a Wounaan indigenous leader, who has been threatened by illegal loggers and settlers for several years, because of his efforts to protect 20,000 hectares of rainforest along the Pacific coast, submitted the UAV-generated documentation to the environmental authorities. Impressed by the accurate geo-referencing of the images documenting forest destruction, the Ministry of Environment promised to be more present in the area and enforce the law.

In late January 2016, Diogracio reported that the authorities had been patrolling the district of Platanares constantly, and that most of the settlers had been at least temporarily removed. ‘I have been denouncing illegal loggers in Platanares for over five years, and the authorities have done nothing, not moved a finger,’ Diogracio Puchicama noted. ‘Now, after they have realised that we have the drone, they are doing their job and enforcing the law. It’s a good sign.’

Protection of indigenous rights

Emberá and Wounaan communities are planning in partnership with the Rainforest Foundation US and the Food and Agriculture Organisation (FAO) of the United Nations to fly UAVs in at least six more indigenous communities in Panama. They will use the imagery to raise awareness among local communities of the ongoing illegal and un-monitored forest destruction within their traditional territories and the need to document and denounce this destruction to the authorities. They will also use the aerial photographs to help Panamanians understand how important forests are, and the essential role that indigenous peoples have played in keeping them intact.

The experience from Panama illustrates that UAVs have the potential to alter the power balance in favour of indigenous communities’ own ability to protect, monitor, and report on their lands, territories, and natural resources. This technology empowers indigenous people to play an active role in safeguarding their lands and to become equal partners – rather than just beneficiaries – to government and civil society agencies, which are involved in conservation and rights’ protection.

Indigenous peoples’ communities, organisations, and their civil society partners in the region and beyond are now very interested in adopting UAVs for conservation or for the protection of indigenous rights and territories. There are further discussions with the Mesoamerican Alliance of Peoples and Forests regarding the use of UAVs in Central America and with an indigenous network in Bolivia. Indigenous communities in Guyana and Indonesia are already using UAVs for land mapping. Also in Africa the Shompole Maasai community in Kenya and a forester in the Democratic Republic of the Congo are interested in using the technology. This shows that the interest in UAVs is growing all around the globe for monitoring illegal land use in indigenous territory.

About the authors:

Nina Kantcheva Tushev (nina.kant@gmail.com) is co-founder of Tushevs Aerials and indigenous peoples’ rights advisor at the UNDP. Tom Bewick (tombewick@rffny.org) is program manager at the Rainforest Foundation US. And Cameron Ellis (jamescameronellis@gmail.com) is principal at Groundtruth Geographics.

Related Links:

Video that demonstrates how Dayaks in Indonesia make use of UAVs.
https://goo.gl/u8Bv2v

Article and video outlining a training in the use of UAVs with indigenous communities in Peru.
https://goo.gl/jhoMFJ

Source: ICT Update # 82

Thursday, April 28, 2016

Drones for Agriculture - Long awaited ICTUpdate issue now released

At CTA they started working on this issue in November 2015. Finally it is available in both English and French. Are you interested in the topic?  Follow @uav4ag on Twitter and join the community on www.uav4ag.org

Thursday, March 31, 2016

Mapping deep in the jungle: our experience among Saramaccan Peoples

In July 2015 local residents and leaders from 14 indigenous Saramaccan villages, located along the upper Suriname River, collaborated with local and international NGOs to create a physical 3D representation of their traditional land and waters using participatory three-dimensional modelling (P3DM). The mapped area is sparsely populated and characterised by externally-driven logging and mining activities. The mapping process, provided participants with a comprehensive and detailed understanding of the landscape, its interlocked ecosystems, and potential impacts of road development and related extractive activities. This enabled them to formulate informed opinions on how best to develop, preserve and manage the traditional territories.

The process has highlighted how effective P3DM is when it comes to bottom-up and inclusive landscape planning. Helping communities to build a 3D model of their territory is proving to be an effective way for knowledge held by different individuals to be collated, geo-referenced and visualised, thus generating a powerful pool of data mostly unknown to the outside world. If strategically used, this data could shift the balance of power in favour of those who would otherwise not be included in decision-making processes.

The blog below was written by Nicholas Fields (INTASAVE Caribbean/CARIBSAVE) and Gaitrie Satnarain (CARIBSAVE Associate at the Anton de Kom University of Suriname).

CARIBSAVE was invited by Tropenbos International Suriname (TBI) and CTA to participate in a Participatory three-dimensional modelling (P3DM) exercise, conducted on 21–31 July 2015, as part of the above-mentioned project. Our group included representatives from TBI (including persons of Saramaccan origin), students and staff from the Anton de Kom University of Suriname, and ourselves – representing CARIBSAVE. Sponsored by CTA, our participation in the exercise helped us to understand and appreciate the P3DM process and now enables us to replicate it within our own projects in the Caribbean region. It is our intention to share what we have learned with our colleagues and build capacity within our own organisation.

What is P3DM?

P3DM is an inclusive process of building a physical 3D model of a specific area that details how communities use the natural environment – has demonstrated its significance and practicality beyond rudimentary research and data collection purposes. P3DM has proved to be an effective tool for bringing a diverse group of stakeholders, including representatives from the villages, community-based and non-governmental organisations, technical people and policy-makers, to the table to exchange ideas, perspectives and information; strengthen and build new relationships; support decision-making related to land use; and re-invigorate a desire to protect the environment and to use our resources sustainably for the benefit of current and coming generations.

A long journey to a remote location

On the first day we travelled three hours by bus followed by two hours by canoe to the Saramaccan village of Pikin Slee (which means ‘small village’ – although it is, ironically, one of the most inhabited and visited villages in the Upper Suriname basin) and the neighbouring ecolodge, Pasensie. From the river, the village does look deceptively small, but on traversing inland you can see that the landscape is dotted with variously sized dwellings used for domestic and communal activities. Saramaccan way of life is modest, with irregular access to amenities that one would have in the city (with the exception of smartphone/mobile devices, which are abundant).

Mapping the environment

We were warmly welcomed by the villagers upon arrival. The next five days were extremely busy assembling the blank model – that is a plain, white, three-dimensional canvas prior to any painting, drawing or pinning. The blank canvas is comprised of stacked layers of foam board material, with each layer representing an altitude interval, and shaped according to the specific altitude contour. The result is a scaled and geo-referenced three-dimensional canvas of hills, valleys, plains and depressions of the real-life landscape. The actual size of the area modelled was approximately 2,232 km2 and, with a horizontal scale of 1:15,000, the model developed into a rather large construction, involving five tables of approximately 1.6 x 1.2 m each.

Model construction is exciting as well as intensive, and the teenagers from a village-based school who took part in this process would certainly agree on this! The facilitators helped the students to trace each contour onto the foam boards, cutting these accordingly and affixing each layer of board to the model. Once the foam boards were cut according to the contours and stacked, the model was covered with plaster to allow for painting, which is perhaps the most labour-intensive component of the process, requiring precision, accuracy and careful attention to detail. The team had some initial challenges with matching and/or aligning contour maps, foam board pieces and uneven table tops, as well as working with the foam board itself. Understanding the nature of the problems, considering possible corrections and subsequent improvement was an important part of the learning process.

Mapping the knowledge

The next phase of the exercise, which took another 4–4½ days, involved populating the blank model with data on land cover and use (e.g. forests, agricultural land), locations of villages and estimated populations, and types and locations of activities associated with the villages and their inhabitants. The map legend – outlining what features would be located and visualised on the model – was finalised beforehand by the facilitators and representatives from the different villages located within the modelled area.

This stage was the most crucial and sensitive. Local residents and leaders had full autonomy entering data on the model at this point. This helped building buy-in and ownership of the process by the villagers, and minimising interference or perception of bias by the facilitators. Local residents spearheaded the process of identifying and marking features, place names and locations of activities. The facilitators (mainly the TBI team members of Saramaccan origin) offered only moderate guidance, taking care not to influence the direction of discussion except in the interest of maintaining consistency in the use of legend items, scale, focus and time, or mediating diverging opinions when these arose. Only agreed data were placed on the model. Specific locations and activities of cultural, spiritual or – in some cases – economic significance were not visualised, in the locals’ interest of protecting their security and inviolability.



Despite the fact that locals were given autonomy at this stage, some of them were distrustful of the process, fearing possible coercion, exploitation and vested interests by outsiders. The presence and interaction of the Saramaccan facilitators in the TBI team helped to alleviate most of these fears. Still, it was intriguing to observe the sometimes animated dialogue between locals as they detailed various parts of the model – indicating primary and secondary forest areas, tracks and paths, and places of work, domestic and recreational use.

We learned a lot there by observing and implementing the P3DM activity. And the strong multi-cultural element added another dimension. The indigenous Maroon groups were working with their own set of norms, practices and structures, which were very different to those that the external facilitators were used to. Including the participants and facilitators, the 10-day exercise brought together people of at least five nationalities and ethnic groups. At any given time during the activities, there were at least three languages at play: chief of these being Saramaccan, Dutch and English, with intercessions in Spanish and Arkans. While there were some slight communication barriers, none was too difficult to overcome – in fact, this made the experience much more amusing, and there were several side-lessons in foreign language vocabulary. There is no doubt that the group of facilitators also learned much over the two weeks, and established new personal and working relationships to build on in the future.

This P3DM exercise took dedication and was a large undertaking. Significant time and resources were required to co-ordinate and complete the model, particularly when the diversity of players and relative remoteness of the beneficiary groups are taken into consideration. However, the benefits of the exercise – first-hand participation in P3DM, learning and exchanging new information, connecting with people and building new rapports – were outstanding and will be long-lasting. The students’ participation also played an important educational role. We hope that they were able to appreciate the purpose of the model and will take forward what they learned from this process as they become leaders in the future.

Further impact: applying the knowledge gained

Since taking part in the exercise, CARIBSAVE has incorporated the P3DM methodology into one of its project proposals. It is planning to use the P3DM methodology for a participatory flooding hazard mapping and zoning exercise, as part of a larger comprehensive disaster management initiative. Through this exercise, community residents would produce a model that details flooding risk areas, vulnerable persons, infrastructure and emergency facilities as the basis for developing a community response plan.

Gaitrie Satnarain from Anton de Kom University intends to further what she has gained from the exercise by incorporating P3DM as a research tool within her upcoming doctoral study proposal. At the Anton de Kom University of Suriname, the Infrastructure Department in the Faculty of Science and Technology will also discuss potential opportunities with TBI to incorporate and promote P3DM for landscape planning research. CARIBSAVE will continue to explore and incorporate the P3DM methodology into its future projects to support building knowledge and capacity in climate change adaptation, disaster risk reduction and sustainable ecosystem protection and management – especially to benefit vulnerable and otherwise-marginalised groups it works with.

Who is involved?

P3DM in Suriname is led by TBI, as part of a joint multi-scale initiative to model ecosystem services and land-use scenarios in the Upper Suriname River basin (see here), in conjunction with WWF Guianas, the University of Utrecht, and the Association of Saramacca Authorities (Vereniging van Saramakaanse Gezagsdragers [VSG]). The initiative is supported by CTA and the UNDP GEF-Small Grant Programme. Through this initiative, TBI aims “to contribute to improved understanding of the impacts of modern-day human interventions on forests, landscapes and people”. One of the project's results was the construction of a number of physical 3D models to visualise and assess human-environment interactions, particularly in the Upper Suriname River basin, which is inhabited by several indigenous Maroon villages and is also the focus of local and external logging and mining extractive activities.


The enabling power of participatory 3D mapping among the Saramaccan Peoples of Suriname (part 1 & 2) from CTA on Vimeo.

Online resources on Participatory Geographic Information Systems (PGIS), including Participatory 3D Modelling (P3DM)


  • View an interactive map of the world with locations and details of known P3DM exercises
  • Visit the website on Integrated Approaches to Participatory Development (IAPAD).

Stay connected


  • Join the e-discussion around PGIS in English, French, Spanish and Portuguese
  • Are you interested in promoting the use of PGIS for adding value to traditional knowledge, empowering grassroots and conducting participatory land use planning in African, Caribbean and Pacific countries? Join us on Twitter @PGISatCTA and like our Facebook page.

Tuesday, March 29, 2016

Participatory 3D Modelling in Mapanas, Northern Samar, Philippines



Barangays Barangays Sta. Potenciana and Burgos in Northern Samar, Philippines constructed their Participatory 3D Models (P3DMs) with the help of friends from Citizen Disaster Response Centre (CDRC) Bobon, the Philippine Geographical Society and UNICEF Philippines.

Participatory 3D Modelling in Bobon, Northern Samar, Philippines



Barangays Dancalan, Sta. Clara and Arellano in Northern Samar, Philippines constructed their Participatory 3D Models (P3DMs) with the help of friends from Citizen Disaster Response Centre (CDRC) Bobon, the Philippine Geographical Society and UNICEF Philippines.

Friday, March 25, 2016

Participatory 3D Mapping for Disaster Risk Reduction in the Philippines


For two weeks in rural Camarines Norte, two teams of geography majors from UP Diliman facilitated in the making of several Participatory 3D Maps.

Four towns including Labnig and Dalnac in the municipality of Paracale and San Felipe and Taba-taba in the municipality of Basud all had the chance to collectively construct their own 3D Maps that highlight the disaster histories, vulnerabilities and capacities of each town.

Video by Erwin Tolentino

Thursday, March 24, 2016

Être sur une carte veut dire exister : l'expérience des Saramaca

Les communautés Saramaca du Suriname cherchent la reconnaissance de leur savoir traditionnel par le gouvernement

Le 23 février 2016, 18 représentants de la communauté Saramaca issus des régions de Brownsweg et du cours supérieur du fleuve Suriname ont rencontré des décideurs politiques et des acteurs concernés à Paramaribo, la capitale du Suriname. La rencontre a été organisée par les peuples Saramaka afin de partager les résultats d’un processus de deux ans qui a mené à la visualisation et la documentation de leurs connaissances traditionnelles d’une vaste région.

Cartes générées en utilisant des données extraites d’un modèle 3D participatif à échelle 1:15 000 de la zone de Brownsweg (produites en novembre 2015), combinées à un modèle numérique d’élévation obtenu de la Fondation pour la gestion des forêts et le contrôle de la production, au Suriname.
Ont dit qu'une image vaut mille mots. Dans ce sens, les peuvent en effet être un moyen très efficace de transmettre des messages inhérents à la distribution ou accès aux ressources. En fait, le résultat tangible du processus consistait en une série de cartes physiques et numériques générées par la communauté – des cartes dont les délégués Saramaca se montrèrent très fiers.


Les cartes ainsi que les séries de données connexes furent produites en langue Saramaca, en anglais et en néerlandais lors de trois exercices de modélisation participative en trois dimensions (MP3D) organisés en 2014 et 2015. Les exercices impliquèrent 220 habitants, y compris des femmes, des jeunes et des personnes âgées. Un film documentaire sur le processus fut publié en 2015 en langue Saramaca, en anglais et en français.


Lors de la réunion, les leaders Saramaca ont souligné l'unicité des données que les communautés impliquées sont parvenues à rassembler, à géo-référencer et à visualiser en utilisant des technologies sophistiquées comme les systèmes d'information géographique (SIG). En bénéficiant du soutien de l'extérieur, les détenteurs de savoir ont été à même de partager leurs cartes mentales et leurs souvenirs, des apports fondamentaux pour peupler les modèles en 3D vierges.

Les représentants Saramaca ont attiré l'attention sur la pertinence et la précision des données, ainsi que leur accessibilité à de tierces parties à condition d'obtenir le consentement préalable à leur utilisation. « Nous avons créé cette carte pour qu'elle soit utilisée. Nous voulons que d'autres personnes l'utilisent. La seule chose que nous demandons c'est que les données ne soient pas utilisées sans nous impliquer », soulignait l'un des représentants de la communauté.

Les délégués Saramaca ont encouragé l'utilisation des données à des fins de planification spatiale et ont lancé un appel au gouvernement et aux investisseurs du secteur privé pour que ces derniers reconnaissent les Saramaca en tant que parties prenantes principales et, par conséquent, pour qu'ils les impliquent au maximum dans la planification des exploitations forestières et dans la gestion des zones protégées et des concessions aurifères situées dans le territoire Saramaca traditionnel.

Ils ont également préconisé la reproduction de processus de MP3D dans le reste du territoire Saramaca de façon à générer une carte complète des terres Saramaca traditionnelles. Pour ce faire, ils ont exhorté le gouvernement, les organisations de développement, le secteur privé et les ONG présentes à la réunion à lever les fonds nécessaires.

L'événement était organisé par Tropenbos International Suriname, WWF Guyanas et l'Association des autorités Saramaca. Outre Tropenbos International Suriname, les sponsors du projet comprenaient le Programme de microfinancements du Fonds pour l'environnement mondial (UNDP GEF-SGP) et le CTA. Les contributions de ces organisations ont été dûment reconnues. Les participants ont notamment décrit ces contributions comme du terreau fertile pour l'autonomisation de la communauté à travers la MP3D, un processus très novateur selon eux. Les participants ont également signalé que le processus de MP3D a inspiré d'autres communautés qui sont à présent en train de demander le soutien nécessaire à la mise en œuvre de processus de MP3D dans leurs territoires.

Restez connectés

Suivez @PPGIS sur Twitter ou avec le hashtag #P3DM
Visitez le site web du CTA sur les Systèmes d'information géographique participatifs (SIGP).
Inscrivez-vous au groupe de discussion en ligne sur DGroups (francophone).

Being on a map means to exist: the Saramaccan experience

Saramaccan communities in Suriname seek government’s recognition of their traditional knowledge

On 23 February 2016, 18 Saramaccan community representatives from the Brownsweg and Upper Suriname River areas met in the capital city, Paramaribo, with key stakeholders and policymakers. The meeting was organised by the Saramaccan Peoples to share the results of a two-year process which led to the visualisation and documentation of their traditional environmental knowledge over a vast area.

Maps generated using data extracted from the 1:15000 scale participatory 3D model of the Brownsweg area (manufactured in November 2015), combined with the digital elevation model obtained from the Foundation for Forest Management and Production Control, Suriname.
It is said that a picture is worth a thousand words and maps may be even more effective in conveying messages when it comes to resource distribution and access. In fact the outcome of the process – which the Saramacca delegates proudly presented at the meeting – consisted of a series of community-generated physical and digital maps.

The maps and various data sets were produced in Saramaccan, English, and Dutch languages as a result of three Participatory 3D modelling (P3DM) exercises that took place in 2014 and 2015, involving 220 residents, including women, youth and the elderly. A film documentary about the process was released in 2015 in Saramaccan, English, and French.


Saramaccan leaders highlighted the uniqueness of the data the communities were able to collate, geo-reference and visualise using highly sophisticated technology, including Geographic Information Systems (GIS). Benefitting from external technical support, knowledge-holders were able to share their mental maps and memories which were used to populate blank 3D models.

The Saramaccan representatives drew attention to the relevance and accuracy of the data, and its accessibility to third parties, provided free prior informed consent for their use was given. "We made the map for it to be used. We want other people to make use of it. We only ask that the data is not used without involving us, the Saramaccan Peoples," concluded a community representative.

The Saramaccan delegates welcomed the use of the data for spatial planning purposes and called on the government and private investors to recognise them as key stakeholders and fully involve them when planning logging activities, protected area management and gold mining concessions within traditional Saramaccan lands.

They urged for the replication of P3DM processes in the rest of the Saramaccan territory so that a complete map of traditional Saramacca lands could be generated. To achieve this, they called on the government, development organisations, private sector, and NGOs present at the meeting to raise the necessary funds.

The event was hosted by Tropenbos International Suriname, WWF Guyanas and the Association of Saamaka Authorities.

In addition to Tropenbos International Suriname, project sponsors included the UNDP-GEF Small Grant Programme and CTA. Contributions by both organisations were duly acknowledged, with participants stating that their valuable contribution established a 'fertile ground' for community empowerment via P3DM which they considered to be a very innovative process. Participants also acknowledged that the P3DM process had inspired other communities who were now requesting support to deploy the P3DM process in their areas.


Wednesday, March 09, 2016

River partners: Managing environment and disaster risk in the Democratic Republic of the Congo



River partners: Managing environment and disaster risk in the Democratic Republic of the Congo is a video report on the disaster risk reduction project being implemented by the United Nations Environment Program, the Government of DRC and local communities, with the support of the European Union.

Flooding and soil erosion are major hazards that threaten the Lukaya River basin in the Democratic Republic of the Congo. Located in the outskirts of Kinshasa, this basin is an important source of water supply for the capital. This pilot project will demonstrate how ecosystem-based disaster risk reduction (eco-DRR) can be integrated into c devel
opment planning. Upstream and downstream river users are brought together to tackle disaster risk and development planning in a more integrated manner. Participatory 3D Modelling (P3DM) is used in the process.

Partenaires de la Rivière: Gestion de l'environnement et des risques de catastrophes en République Démocratique du Congo est une vidéo sur le projet de réduction de risques de catastrophes mis en oeuvre par le Programme de Nations Unies pour l'Environnement, le Gouvernement de la RDC et les communautés locales, avec le soutien de l'Union Européenne.

Les inondations et l'érosion du sol sont des aléas majeurs qui menacent le bassin de la rivière Lukaya en République Démocratique du Congo. Situé en périphérie de Kinshasa, le bassin est une source importante d'approvisionnement en eau pour la capitale. Ce projet pilote démontrera comment la réduction de risque de catastrophes à base d'écosystèmes (RRC-éco) peut être intégrée à la planification du développement de bassins-versants. Les usagers de la rivière en amont et en aval sont réunis pour aborder ensemble les problèmes de risque de catastrophes et de planification du développement, d'une manière plus intégrée. La cartographie participative en trois dimensions (MP3D) a été utilisée dans le processus.

Friday, March 04, 2016

IWD2016 - Celebrating women: A champion for the rights of indigenous people

An encounter with an innovative technique known as participatory three-dimensional modelling was to prove a turning point in the life of a young tribeswoman from rural Chad. She now travels the globe to advocate for the rights of her own and other indigenous communities, and to press for their voice to be heard in negotiations about climate change, on which their futures depend.

Growing up as part of the M'bororo people – traditional semi-nomadic and nomadic herders living in Chad and neighbouring countries – nothing could have prepared Hindou Oumarou Ibrahim for the turn her life would take once she was introduced to participatory mapping. At the time, she was a young woman, working to gain recognition of her people's rights, and especially for access to the natural resources that are critical to their livelihoods.

Participatory three-dimensional modelling (P3DM), or participatory mapping, brings together traditional knowledge from local communities about their landscapes and ecosystems with data on physical features, such as land elevation and sea depth. The result is a scaled and geo-referenced three-dimensional (3D) model, which can be a powerful tool for knowledge building and communication, as well as for gaining recognition of local communities' rights to be involved in decision-making that affects their natural resources.

Hindou's introduction to P3DM came through the Indigenous Peoples of Africa Co-ordinating Committee (IPACC), a network of 150 indigenous peoples' organisations in 20 African countries. IPACC had been introduced to participatory mapping by CTA's P3DM expert, Giacomo Rambaldi, and supported in its use as a tool for gathering evidence for indigenous peoples' arguments in national and international negotiations.

A bitter conflict

Encouraged to learn about the practice through a P3DM exercise in Gabon, Hindou spent two weeks living with local pygmies and helping them to build a participatory 3D map of their jungle landscape. The pygmies had lost some of their hunting and fishing rights when a national park was created, and the mapping exercise succeeded in its goal of convincing the government that these indigenous people had a right to be consulted about decisions affecting their homeland.

Hindou was hooked.



"It was a long way away from my own community and very different, but I found the exercise exciting and interesting," said Hindou, who is Director of the Association des Femmes Peules Autochtones du Tchad (AFPAT) and IPACC's Executive Committee representative for the Congo Basin region. "It was the first time I had seen all the intergenerational people mobilised – women, youths, men and elders. I realised that if we did this in my own community, it could help resolve a great many issues."

That chance came in 2012, when, with CTA support, a mapping exercise involving Hindou's own M'bororo people was organised in the southern district of Baïbokoum, the scene of conflicts between nomadic herders and sedentary farmers. Increasing scarcity of natural resources, especially water reserves, was being exacerbated by climate change and population growth, and the bitter contention between the two groups was threatening to spiral out of control.

Hindou was closely involved in the P3DM event, organising the workshop that preceded it, which brought together herders, scientists, UNESCO and World Meteorological Organization representatives as well as government officials for the first time. Once again, participatory mapping proved to be a winning approach. The model-making process enabled all players to have an overview of the contested area, highlighting where the farmers had barred the routes used by herders to take their cattle to water and identifying a range of solutions that would be acceptable to all.

The mapping exercise showed that indigenous peoples could play an effective role in decision-making, from which they had always been excluded in the past. And it gave a new sense of self-confidence to all members of the community, especially women.

"We took the opportunity to increase the capacity of women to express themselves, showing men that the women had a voice and that their opinions were sometimes more valuable than those of men – and the men accepted this," said Hindou. "As a result, women had a greater say in community affairs."



Powerful traditional knowledge

At a personal level, the mapping exercise also proved an eye opener for Hindou herself.

"The impact on me was huge. This was my community, so I knew all the traditional knowledge, but it helped me to understand things that didn't belong to my own generation," she recalls. "It changed my life forever."

Hindou now uses P3DM in all her work, to illustrate the importance of conserving traditional knowledge, how to marry it with scientific knowledge and using both to combat climate change and protect the environment.

Although her roots are still firmly anchored in her community, Hindou has become used to travelling the world to make presentations and put the indigenous people's case to high-ranking officials in climate-change negotiations. For the past 10 years, she has been a regular participant at meetings of the UN Conference of the Parties (COP) to the UN Framework Convention on Climate Change. She is Co-Chair of the International Indigenous Peoples' Forum on Climate Change (IIPFCC), which represents the interests of indigenous peoples throughout the world and presents these at COP negotiations.

"Climate change is a massive problem for indigenous people because we depend on the environment. For any indigenous people, from any corner of the world, livelihoods are linked to natural resources, for our food and medicine, for everything, so if there are floods or droughts the impact is greater for us," she said. "Of course, it is highly unusual for someone of my background to be travelling the world and speaking at conferences and negotiating. But for me, it is important to change the life of my community. I know my people are proud of what I am doing and I can never give up my work. I want to help my community to adapt to climate change, and you cannot talk about climate change without talking about the rights of indigenous people."

Reposted from Spore with permission.

Thursday, January 21, 2016

Hands on Culture - Participatory 3D Modelling with Mandingalbay Yidinji People in Australia



This video is about the 3D mapping project of the Mandingalbay people near Yarrabah North Queensland. This project was supported by the Wet Tropics Management Authority, IUCN and CTA to producing a short film based on the amazing project the community took on to bring their 3D mapping project to life.

Monday, January 11, 2016

Di mbei di dee Saamaka sëmbë mbei di ageesi kaita de seei u de sa seeka sondi u de (video voiced in Saamaka)



Feifi teni jaa pasa kaa, di wan feifi dusu Saamaka sёmbё so bi abi u voloisi di de mbei di dan. De bi abi u kumutu disi di kamian te ka dee gaan sёmbё u de bi ta libi a di Saamaka lio. Te ku di daka u tide di voloisi aki dё a de pakisei eti. Dee Saamaka sёmbё dee ta de a moo libasё u di Saamaka lio ta abi umёni boöko hedi, we bika de an feni leti u di matu jeti. So seei pasi ta mbei ta ko a di kamian te ka de ta libi. Di mbei u di ageesi kaita u di tan kamian u de, ta konda fa de seei ta si di libi u de, fa de ta woko ku di matu, so sei di kaita sa heepi de u gaan lanti sa fusutan de moo bunu u de ta sa a wan taki a dee sondi di ta pasa a di konde.

Version française: http://goo.gl/ggXyw5
English version: http://goo.gl/hS5nKb

Saturday, January 09, 2016

Speaking of Home - The story of the Mount Elgon Ogiek



The Ogiek peoples live on the slopes of Mount Elgon in Kenya. This documentary shows the Ogiek's relationship to their homeland and to the world.

As indigenous peoples without official minority status in Kenya, the Ogiek have gone through evictions from their native land for decades. Time after another they have returned to their land to continue living in the forest.

The documentary is the Ogiek's story, in their own words, of their hopes before the 2013 Kenyan elections. It was filmed in Chepkitale, Mt. Elgon in 2012 during a 3D mapping workshop.

Through developing a 3D map of their land, the Ogiek not only strengthen their cultural identity, but can show that the land said to belong to someone else, is rightfully theirs.

Credits: The film has been produced by SHALIN Suomi Ry and has been featured at the Helsinki African Film Festival.

More on the case is found here.

Knowledge and cultural transmission in Kenyan participatory 3D mapping

This film interview of Dr. Nigel Crawhall, Director of Secretariat at the Indigenous Peoples of Africa Co-ordinating Committee (IPACC), is his explanation of the intergenerational ecological knowledge transmission in participatory 3-dimensional modelling (P3DM). Crawhall discusses his observations on intergenerational interaction when the Ogiek community of Nessuit, Kenya, built a geo-referenced 3D model of their mountain forest landscape in 2006.



The mapping exercise was attended by representatives from 21 Ogiek clans, and an area of 52,800 hectares (ha) was mapped at a scale of 1:10,000. Participants included close to 120 representatives from the different clans, both men and women. Elders populated the model with their memories dating back to 1925 and reconstructed the landscape as it was at that time. The model displays 64 data layers including different types of areas, points, and lines. In 2008, the Ogiek people expanded the coverage of the model to include further 40,000 ha.

This kind of physical 3D model creation can serve the community for the following:

  • Generating spatial geo-referenced data based on a community perspective on land use, vegetation cover, resource distribution, tenure, etc;
  • Storing and displaying such data at a community level;
  • Supporting intra- and inter-generational knowledge exchange;
  • Adding value and authority to local knowledge;
  • Involving communities in developing resource use and management knowledge;
  • Conducting preliminary collaborative research on distribution of species;
  • Monitoring jointly with the concerned stakeholders' changes in land use, vegetation cover, human settlement, infrastructure development, and other features;
  • Serving as a benchmark; and
  • Supporting the learning of local geography and resource use.

The purpose of the model was to record traditional territory and land use patterns, as well as memory and history from a land use and environmental perspective. As reported here, through map building and coding, the clan experienced participatory community enthusiasm and cooperation between elders, young adults, and youth on intergenerational knowledge, language, and heritage transfer, tapping knowledge otherwise lost over time. The 3D style of the map encouraged explanation of the clan’s historical land use patterns and included creating a key or legend to increase understanding of the interrelationships of land, vegetation, altitude, and layers more of information, leading to more complex environmental knowledge that other methods, for example walking on the land, might not provide.

In addition, young people gave attention to the process and listened while elders debated historical use patterns from their memories. A linguistic dimension, which evolved due to the use of English, Kiswahili, and Ogiek, drew out more explicit meaning of vocabulary in Ogiek. Intergenerational knowledge transfer affirmed the elders' lived experience, and the process transferred to the younger members of the community the realisation of the complexity of their environment and the depth of knowledge available to them through their elders.

Source: The Communication Initiative

More information on the case is found here.

Wednesday, January 06, 2016

The Right to be Different: Struggle for Water and Identity in the Andes



In the parish of Licto, near Riobamba, in Ecuador, the indigenous population fought for its water. Indian peasants participated in the design, construction and organisation of the irrigation system. After more than 20 years the water finally reached the community. The story is told by Inés Chapi, an Indian woman, who came a long way from being oppressed and discriminated against to become a most respected irrigation organiser in the system.  In the Andes they call it blood of the earth, the source of life from which other life grows. Water, feeding the land as well as the imagination. Giving rise to rituals and myths, fueling tradition and culture. Ancient and modern conquerors of these highlands denied the indigenous people access to springs and rivers. Water became a source of conflict. And usually the Indians got a raw deal.

Based on: The Rules of the Game and the Game of the Rules’ by Rutgerd Boelens; Executive producer and scenario: Barend Hazeleger; Photography: Thom Deelstra; Sound recordist: Juio Gorck; Editing: Jan Pieter Tuinstra & Barend Hazeleger; Scientific research and Interviews: Rutgerd Boelens; Produced by Agrapen and Wageningen University (2003)

More on the case: http://bit.ly/1OAlBsX

Friday, December 18, 2015

Le pouvoir de la cartographie participative en 3D chez les Saramacas du Suriname (video)



Il y a cinquante ans, quelque 5000 individus du peuple Saramaccan du Suriname ont dû quitter leurs terres traditionnelles, le long de la Rivière Suriname en raison de la construction d'un grand barrage. Les blessures de cette transmigration se font encore sentir aujourd'hui. Pendant ce temps, les Saramaccans qui vivent dans cette région font face à de nouveaux défis, car leurs droits territoriaux ne sont pas encore officiellement reconnus et les infrastructures routières pour accéder à la zone sont en voie d'amélioration. La création d'une maquette participative de la zone qui visualise et documente leurs traditions et l'utilisation traditionnelle des ressources contribue à surmonter leur frustration et leur redonner espoir.

English version: http://goo.gl/hS5nKb
Saamaka version: http://goo.gl/9XC2Jb

The enabling power of participatory 3D mapping among the Saramaccan Peoples of Suriname (Video)



Fifty years ago, some 5000 Saramaccan Peoples of Suriname had to leave their traditional lands along the Suriname River due to the construction of a major dam. The wounds of this transmigration are still felt today. Meanwhile, the Saramaccans who live in the Upper Suriname River area face new challenges since their territorial rights are not yet officially recognized and road infrastructure to access the area is improving. Creating a 3D model of the area that tells the inside story of their traditions and land use can help them to overcome their sense of being misunderstood by decision-makers and rediscover their voice.

Language versions:
Version française: http://goo.gl/ggXyw5
Saramaccan version: http://goo.gl/9XC2Jb

The 15 min video production "The enabling power of participatory 3D mapping among the Saramaccan People of Suriname" has been launched on October 9 at the 13th Caribbean Week of Agriculture in Paramaribo. The launch occurred during the session "Maps as media in policy processes: Bringing the 3rd dimension to the negotiating table" in the presence of representatives from the Saramaccan community.

The launch was followed by reflections done by Saramaccan representatives Mr Godfried Adjako, one of the captains of the village of Kaajapati, and Ms Debora Linga who spent her infancy with her grandparents on their farm on the shores of the Brokopondo Reservoir and later on kept visiting them in Ginginston village along the banks of the Upper Suriname River.

Mr Godfried Adjako recalled that in the process of populating the 3D model the community, especially the youth, learned a lot from the elders. "The map now shows our life, the Earth we live on, the Earth we walk on, the Earth without which we cannot live."

"We can use the map to take decisions on where to locate future developments", he added. Both men and women contributed to the map. "Women know a lot about the surrounding of the villages, while men who use to go hunting, know the most about far away areas."

Mr Adjako stated that when developing the legend ahead of the mapping exercise, the community decided to omit sensitive and confidential information. Therefore the data contained in the model and currently being digitised by Tropenbos international Suriname should be considered as publicly available.

The P3DM process has been a discovery journey for young Debora. "In the 60's my grandparents had to resettle because their village had been submerged by the rising waters of the Brokopondo Reservoir . They resettled along the Upper Suriname River in a village called Ginginston where I grew up. I could not understand the reason why my grandfather kept on navigating a long way along the river to reach the shores of the lake where he was growing watermelon" she said. "I discovered the reason while chatting with an elder who explained to me that transmigrating families were welcome by Saramaccan villages uphill the lake, but were granted limited access to resources. In fact they were sort of borrowing the land from people who occupied it for generations. Thus they only had access to small farming areas. In Saramaccan this is how you feel: they were living on somebody else's land."

Friday, December 11, 2015

Socially engaging, user-friendly, and user-useful approaches in ecosystem service research

Participatory 3D modelling was presented as a ground breaking approach to use in participatory ecosystem service research during the 8th Ecosystem Service Partnership Conference, held in Stellenbosch, South Africa from the 9th to the 13th of November 2015. The Conference saw the participation of around 380 scientists from around the globe.



The presentation by Sara Ramirez A socially engaging, user friendly and user-inspired approach in ecosystem research took place within the workshop “Indigenous peoples in their ecosystems’’. An ecosystem service research project was designed and implemented in Suriname, which used Participatory 3D Modelling (P3DM) to engage local communities in a process of co-producing knowledge about ecosystem services and competing land uses.

P3DM is an effective tool to involve scientist and local knowledge holders in an equally and transparent co-production of salient and legitimate knowledge about ecosystem services. Parallel to research outputs (of main interest to the researcher), a P3DM approach yields directly tangible outputs for the local communities which makes research inclusive and legitimate. Attendees during the session participated actively through questions and feedback.

Friday, November 06, 2015

Facilitating climate smart adaptation through the use of Participatory 3D Modelling by Neila Bobb-Prescott at the Caribbean-Pacific Agri-Food Forum in Barbados



Participatory 3D Modelling or P3DM in short, is a community-based mapping method which is spreading in the Caribbean Region. It facilitates planning and action-taking on climate change related issues. Considering the potentials of the process, efforts are needed to promote the success stories of its use to date. This presentation at the Caribbean Pacific Agri-Food Forum in Barbados (206 November 2015) is an important step in promoting the practice in the region.

Neila Bobb-Prescott's participation in the 2nd Agribusiness Forum has been supported by the Technical Centre for Agricultural and Rural Cooperation ACP-EU (CTA)

Participatory mapping processes for data generation and exchange in SIDS by Aly DeGraff at the Caribbean-Pacific Agri-Food Forum in Barbados



Participatory mapping is the solicitation and incorporation of geospatially focused local knowledge in bottom-up decision-making processes. It provides a wide decision-making base, taking into consideration the collaborative collection and validation of data while building ownership in the generated data. Participatory mapping can be used as a powerful tool to strengthen public participation in governance and social change in agribusiness communities.

Aly DeGraff delivered her talk at the Caribbean-Pacific Agri-Food Forum in Barbados organised by CTA and partners.

Tuesday, November 03, 2015

L’équipe samoane de cartographie participative a reçu un prix de développement durable

Le 25 septembre 2015, le département forestier du Ministère des ressources naturelles et de l’environnement des Samoa (MNRE) a reçu le prix de l’innovation et de l’excellence dans la fonction  publique dans la catégorie initiative en faveur d’un développement durable et respectueux de l’environnement pour la mise en œuvre du projet sur l’intégration des risques et de la résilience au changement  climatique dans la gestion des forêts  (ICCRIFS).

Le projet ICCRIFS Project s’étale sur une durée de quatre ans et est financé par  le Fonds pour l’environnement mondial (FEM, GEF en anglais) via le le programme des Nations Unies pour le développement  (PNUD). L’objectif du projet est d’intégrer les risques liés au changement climatique dans la gestion des forêts aux Samoa. Après une formation organisée en 2012 par le  Centre technique de coopération agricole et rurale (CTA) portant sur l’utilisation de la modélisation participative en trois dimensions (MP3D), les équipes du projet ICCRIFS ont mis sur pied 18 exercices de MP3D à l’intention des communautés locales dans des domaines comme la gestion de l’eau, des forêts et le tourisme. Le premier modèle participatif en trois dimensions qui a été mis en œuvre  (il couvrait les villages s’étendant de Laulii à Falevao) est devenu un outil de plannification très efficace. Il a permis d’impliquer les gens en leur apportant des connaissances et des compétences en matière de gestion de l’environnement et en leur fournissant des outils pour s’adapter au changement climatique et en réduire les effets.

La remise des prix de l’innovation et de l’excellence dans la fonction publique a eu lieu le 25 septembre dans le cadre de la quatrième journée de la fonction publique. Cette journée est organisée pour commémorer, célébrer et reconnaître la contribution et le rôle de la fonction publique en vue du développement national des Samoa. Près de 50 ministères gouvernementaux et d’organismes publics ont pris part aux célébrations cette année.

Ces prix visent à saluer le dévouement que les fonctionnaires mettent à remplir la mission des ministères et départements pour lesquels ils travaillent. La désignation des lauréats potentiels a été demandée au grand public au mois d’août et ces choix ont ensuite été évalués par un panel indépendant de trois membres : le Président de la Chambre de commerce au nom du secteur privé, Vaasilifiti Moelagi Jackson (Président ad intermim de SUNGO) au nom de la société civile et le Président de la Commission.

Le grand public ainsi que les établissements scolaires étaient invités à cette occasion à communiquer avec les agences gouvernementales afin d’avoir une meilleure compréhension de leur rôle et de leurs fonctions, ainsi que de la manière dont ces agences ont une influence sur la vie de tous les jours.

Thursday, October 29, 2015

Samoa’s Ministry of Natural Resources and Environment receives award for engaging civil society via participatory mapping

On 25 September 2015 the Forestry Division of the Ministry of Natural Resources and Environment of Samoa (MNRE) received a Public Service Innovation and Excellence Award in the Environmental Friendly/Sustainable Development Initiative team category for the successful implementation of the Integration of Climate Change Risk and resilience into Forestry management in Samoa (ICCRIFS) Project.

The ICCRIFS Project is a 4 year project funded by the Global Environment Facility (GEF) through the United Nations Development Program (UNDP). The goal of the project is to integrate climate change risks into forestry management in Samoa. After being trained by the Technical Centre for Agriculture and Rural Development (CTA) in practising Participatory Three-Dimensional Modelling (P3DM) in 2012, staff of the ICCRIFS Project successfully facilitated a total of 18 P3DM exercises with communities in various sectors including water, forestry, tourism. The first P3D Model to be implemented (covering villages from Laulii to Falevao) became a very effective planning tool. It helped engaging the community by building capacity, knowledge and skills on environmental management, and ways to adapt and mitigate climate change.

The 2015 Public Service Innovation and Excellence Awards ceremony, took place on the 25th of September 2015 as part of the 4th annual Public Service Day. The Public Service Day is held to commemorate, celebrate and recognize the public sector’s contribution and service into achieving the national development of Samoa. Close to 50 Government Ministries and Public Bodies took part in this year’s celebrations.

These Awards are used to recognize the dedication of public servants in achieving their respective Ministry’s and Office’s objectives. Nominations of potential awardees were solicited from the general public in August and were thereafter assessed by an independent panel consisting of 3 members: the Chamber of Commerce President on behalf of the private sector, SUNGO Interim President Vaasilifiti Moelagi Jackson on behalf of the civil society, and the Chairman of the Commission.

The general public as well as schools were invited to take advantage of the opportunity to engage with Government agencies to gain an in-depth understanding of the functions and roles of each of the participating agencies and how these relate to their everyday life.

Related postTop UN officials Helen Clark and Naoko Ishii praising outcome of P3DM activities in Samoa

More information on the P3DM process and case studies are found here and here.

Wednesday, October 21, 2015

Community-based Disaster Risk Reduction in the Philippines



With the support of UNICEF and the University of the Philippines, children in Camarines Norte help their communities in locating the hazard risks in their areas and plan disaster preparedness measures using a Participatory 3D Model (P3DM).

Sunday, September 20, 2015

Drones and Aerial Observation : New Technologies for Property Rights, Human Rights, and Global Development

Gregor Maclennan from Digital Democracy talks about the use of UAVs used in the context of indigenous land rights in Guyana.

More information on New America

We have wings to fly - Join the uav4ag community

The use of unmanned aerial vehicles (UAVs) or drones for management of crops, livestock, fisheries, forests and other natural resource-based activities represents a new technological frontier and opens up a range of exciting opportunities. UAVs offer also opportunities for grassroots’ involvement in monitoring use of and access to the resources their livelihoods depend on.

A community has been established on www.uav4ag.org to cater for practitioners, researchers, farmers, entrepreneurs, service providers operating in developing countries and who are interested in the topic.  Members of the community share their experiences in developing UAV technologies and related software applications and more importantly in making use of small UAVs to improve the assessment and management of crops, fishing grounds and other resource-based activities. Relevant events, capacity building opportunities and other resources are signalled as soon as these are known by members of the community.

Being the use of UAVs for agricultural purposes a recent phenomenon, national aviation authorities and potential users are facing new challenges linked to the use of UAVs within their skies. Hence this Community focuses also on existing and forthcoming policies, laws and regulations governing their use.

Thursday, September 17, 2015

Rainforest Airforce: Indigenous Peoples Fly Drones to Protect their Land




In August 2014, Tushevs Aerials (tushevs.com) traveled deep in the Peruvan Amazon to train indigenous leaders in the use of remote-control airplanes for the protection and monitoring of their rainforest. The workshop was hosted by AIDESEP, the country's largest indigenous peoples' network, with participants from the Loreto and Madre de Dios Amazon provinces, as well as from the Panama's Embera peoples. This technology enables communities to monitor and defend their territories against legal and illegal pressures.

These are some images from the weeklong workshop, as well as raw footage that the drone captured while flying over the Pacaya-Samiria National Park in the Loreto Province of Peru.

The music is a regional song called El LLanto del Ayaymama and speaks of a local legend of two abandoned children who the forest spirits save by giving them wings. 

Source: YouTube