Tuesday, October 18, 2016

Drone governance: study of policies, laws and regulations governing the use of unmanned aerial vehicles (UAVs) in ACP countries

The use of UAVs or drones in the management of crops, livestock, fisheries, forests and other natural resource-based activities represents a new technological frontier and opens up a range of exciting opportunities. However, the use of UAVs is a recent phenomenon and interested users and national civil aviation authorities are facing challenges linked to their use within their skies. To realise the full potential of the technology while ensuring the safety and privacy of citizens, two things are necessary: enabling regulatory regimes and increasing awareness of the rules and regulations surrounding civil use of UAVs.

Although the European Commission recently supported the establishment of an online repository of information concerning regulations issued by all European countries, there is no similar comprehensive database on existing and forthcoming policies, laws and regulations governing the use of UAVs in ACP countries. The Technical Centre for Agricultural and Rural Cooperation ACP-EU (CTA), an international organisation funded mainly by the European Union and operating in 79 African, Caribbean and Pacific (ACP) countries wishes to facilitate the responsible use of UAVs and related software applications to improve the effective management of crops, fishing grounds and other resource-based activities.

To that end, this study assessed the existence or absence of policies, rules and regulations governing the use of UAVs in all 79 ACP countries. The results are quite telling: as of April 2016, 73% of ACP countries did not have any rules or regulations in place; 19% had some regulations in place; and 8% were in the process of formulating them. CTA hopes that this database will help to increase awareness of the rules and regulations surrounding UAV use, promote their responsible use and help to fully realise their potential in the management of crops, fisheries and other resources.

The report is available as a download on CTA's online publications' portal.

Data gathered in the course of the study have been published on a site hosted by The Swiss Foundation for Mine Action (FSD) and is accessible on this wiki www.droneregulations.info which allows online collaboration.

Thursday, September 15, 2016

The Power of Maps - Bringing the Third Dimension to the Negotiation Table

Participatory 3D modelling (P3DM) is one of the most remarkable innovations of the late 20th century. It is remarkable because it brings together three elements that many would consider incompatible – local spatial and natural resource knowledge, geographic information systems (GIS) and physical modelling.

As the inspiring accounts in this volume show, it can do this in many environments, of varied sizes and involving many people, sometimes more than a hundred and inclusively, both young and old. When well prepared and facilitated, as so amply illustrated here, the process gives rise to a progressive creative synergy. This empowers communities, by enabling them to share and express in lasting visual form the rich detail of what they know and by providing them with a tool for analysis, decision-making, advocacy, action and monitoring.

This volume bears testimony to the multiple uses and values of P3DM. In the examples described, the uses to which communities have put their models include natural resource planning and management; land and ocean rehabilitation; mapping their ancestral territories and establishing their rights; planning for conservation; disaster risk reduction and adaptation to climate change and variability; educating children in schools about their history and cultural heritage; bringing together community members with differences; and negotiating with officials and influencing policy.

Foreword by Robert Chambers, IDS

Download this publication
in English
in French

Wednesday, September 14, 2016

Participatory 3D model by indigenous community in Nicaragua



This 3D model has been developed with assistance provided by the Centro para la Autonomía y Desarollo de los Pueblos Indígenas (CADPI) by the indigenous community of Miguel Bikan in Nicaragua and has been used for monitoring, reporting and verification. In completing and using the model, the community has a community-based monitoring information system.

www.p3dm.org


Wednesday, September 07, 2016

Sharing lessons with the world - Tonga’s P3DM success story

HONOLULU, 5 September 2016. Tonga was represented on the world stage at the World Conservation Congress in Hawaii this week. The island kingdom successfully carried out Participatory Three-Dimensional Modelling (P3DM) for the Vava’u island group this year as part of the Integrated Island Biodiversity Project.

At a special event to launch the Power of Maps book at the World Conservation Congress, Ms. Ana Fekau, the IIB Project Coordinator of Tonga shared their story of the P3DM process and how it helped to strengthen community engagement in planning for the conservation of biodiversity in Tonga.

“The process in developing the first P3DM in the Kingdom of Tonga brought communities together, the elderlies, youth and school children. The P3DM was not just a tool for planning purposes, but was also a tool to empower communities and to hear their voices through the stories they were sharing during the process,” said Ms. Fekau.

Hindou Ibrahim Omarou opening the session on the book lauch
(Image credit: Mikaela Jade)
The IIB Project supports an integrated ecosystem approach to the biodiversity conservation management at the local level in the Cook Islands, Nauru, Tonga and Tuvalu. The four year project finishes at the end of this year.

“The World Conservation Congress has provided an excellent platform to showcase and share Tonga’s P3DM work that was successfully completed under this project, and the expansion of this work to Nauru and the Cook Islands,” said Ms Easter Galuvao, Biodiversity Adviser at the Secretariat of the Pacific Regional Environment (SPREP).

Ms Ana FeKau presenting at the book launch
(Image credit: Nigel Crawhall)
During her presentation, Ms Fekau explained the 3D participatory process, the challenges faced and valuable lessons resulting from Tonga’s P3DM, including her role in the successful replication of P3DM in the main island of Tongatapu.

I wish to express sincere thanks and acknowledge the GEFPAS IIB Project and SPREP for facilitating the P3DM for Tonga, the Samoa Ministry of Natural Resources and Environment for providing their valuable technical expertise and to the Technical Centre for Agricultural and Rurel Cooperation ACP-EU (CTA) for their support,” said Ms Fekau during her presentation.

The presentation was given at a side event at the IUCN World Conservation Congress (WCC) currently underway in Honolulu, Hawaii is attended by over 9,000 participants from around the world and will wrap up on the 10 September.

The GEFPAS Integrated Island Biodiversity (IIB) Project is funded by the Global Environment Facility (GEF), implemented through the United Nations Environment Programme (UNDP) and executed by SPREP in the Cook Islands, Nauru, Tonga and Tuvalu.

Note: Ms Ana Fekau works at the Ministry of Meteorology, Energy, Information, Disaster Management, Environment, Climate Change and  Communications (MEIDECC), in Nuku`alofa, Tonga

Sunday, September 04, 2016

A Shared Perspective for (Public) Participatory Geographic Information Systems (P/PGIS) and Volunteered Geographic Information VGI - Published on The Cartographic Journal on 2 September 2016

The paper A Shared Perspective for PGIS and VGI reviews persistent principles of participation processes. On the basis of a review of recent interrogations of the (Public) Participatory Geographic Information Systems (P)PGIS and Volunteered Geographic Information (VGI) approaches, a summary of five prevailing principles in participatory spatial information handling is presented.

We investigate these five principles that are common to (P)PGIS and VGI on the basis of a framework of two dimensions that govern the participatory use of spatial information from the perspective of people and society.

This framework is presented as a shared perspective of (P)PGIS and VGI and illustrates that, although both share many of these same principles, the ways in which these principles are approached are highly diverse.

The paper ends with a future outlook in which we discuss the inter-connected memes of potential technological futures, the signification of localness in ‘local spatial knowledge’, and the ramifications of ethical tenets by which PGIS and VGI can strengthen each other as two sides of the same coin.

Citation: Jeroen Verplanke, Michael K. McCall, Claudia Uberhuaga, Giacomo
Rambaldi & Muki Haklay (2016): A Shared Perspective for PGIS and VGI, The Cartographic
Journal, DOI: 10.1080/00087041.2016.1227552

To link to this article: http://dx.doi.org/10.1080/00087041.2016.1227552

Friday, September 02, 2016

Des cartes qui changent tout : comment des maquettes en 3D aident les communautés rurales à faire entendre leur voix

La construction de véritables maquettes en trois dimensions dans les villages contribue à réunir le savoir traditionnel et les connaissances scientifiques modernes pour relever des défis allant de la dégradation des sols à la planification de l’utilisation des terres, en passant par la gestion des forêts et le changement climatique. La technique, connue sous le nom de «modélisation participative en trois dimensions», permet aux communautés marginalisées de présenter leur territoire – ainsi que les connaissances approfondies qu’ils en ont – sous une forme visuelle. Ce processus leur offre ainsi l’occasion de protéger de précieuses ressources naturelles des menaces extérieures et de les préserver pour les générations futures. Certaines des expériences sur le terrain sont réunies dans un nouvel ouvrage. Le pouvoir des cartes - Quand la 3D s'invite à la table des négociations est publié par le Centre technique de coopération agricole et rurale (CTA), qui est en première ligne de la promotion de cette pratique dans les pays d’Afrique, des Caraïbes et du Pacifique (ACP).

Développée au début des années 1990 en Asie du Sud-Est, la modélisation participative en trois dimensions (MP3D) gagne rapidement du terrain dans d’autres régions du monde en développement. Les modèles participatifs en 3D, fabriqués en carton et illustrés à l’aide de peintures de couleur, de punaises et de fil, représentent l’occupation des terres, par exemple les zones cultivées, les rivières et les forêts, ainsi que d’autres caractéristiques, comme les ressources côtières et la profondeur des mers. Les maquettes montrent aussi les connaissances traditionnelles, comme les droits fonciers ancestraux et les lieux sacrés. Ces éléments sont généralement fournis par les aînés de la communauté, tandis que les plus jeunes construisent la carte elle-même. Le résultat est une maquette en relief, indépendante, qui constitue un outil efficace d’analyse, de prise de décision, de plaidoyer, d’action et de suivi.

« Le savoir sur les ressources terrestres, forestières et aquatiques accumulé au fil du temps et transmis de génération en génération représente un atout majeur pour les populations rurales », affirme le Directeur du CTA, Michael Hailu. « La possibilité de compiler et de géo référencer des connaissances locales et de les représenter sous la forme de cartes en trois dimensions représente une occasion unique pour les populations locales de faire entendre leur voix lors des décisions en matière de gestion durable de leurs ressources. »

Souvent, le processus de modélisation participative en trois dimensions favorise lui-même l’autonomie. Il rapproche des communautés et des générations et les aide à visualiser l’étendue de leurs ressources et la façon dont le changement climatique et d’autres menaces, comme l’extraction minière et la déforestation, peuvent les impacter. Une fois terminée, la maquette reste dans la communauté.

Des études de cas menées en Éthiopie, aux Fidji et à Madagascar montrent comment la MP3D a permis le développement de plans de gestion des ressources naturelles par la communauté. D’autres exemples décrits dans la publication révèlent que cette technique permet aux communautés rurales marginalisées de faire entendre leur voix. En République démocratique du Congo, la communauté pygmée Bambuti-Batwa s’est servie d’un exercice de MP3D pour négocier sur ce qu’ils considèrent comme une injustice : leur expulsion du territoire qu’ils occupent depuis des générations.

La cartographie en trois dimensions a aussi permis à une tribu de chasseurs-cueilleurs au Kenya, les Ogiek, de documenter ses droits territoriaux ancestraux et systèmes de connaissances traditionnels. Tandis qu’à Tobago, une île des Caraïbes qui a subi une série de phénomènes climatologiques extrêmes ces dernières années, la MP3D a servi à orienter les stratégies communautaires de réduction des risques de catastrophes naturelles.

La coopération Sud-Sud contribue à faire connaître la pratique de la modélisation participative en trois dimensions et le CTA est étroitement impliqué dans les efforts de partage des activités de formation et de facilitation entre les îles des Caraïbes et du Pacifique et une série de pays africains.

La MP3D peut avoir d’autres retombées positives, notamment en offrant de nouvelles compétences et une confiance en soi accrue aux individus impliqués dans le processus et en dégageant des financements pour la mise en œuvre d’activités dans les communautés. Citons la Grenade à titre d’exemple où une maquette participative en 3D a eu un impact direct sur la communauté qui l’a créée en mobilisant des financements des bailleurs de fonds pour l'adaptation au changement climatique sur une partie du littoral gravement endommagée par un ouragan.


« La modélisation participative en 3D, le processus au cœur de cette publication, s’est révélée efficace pour récolter chez diverses personnes une quantité substantielle de ce que l’on qualifie de connaissances tacites et pour assembler des points de vue individuels dans une représentation partagée, visible et tangible des connaissances collégiales », déclare Giacomo Rambaldi, Coordonnateur de Programme Sénior, en charge de la participation du CTA aux processus de MP3D. «L’ajout d’un emplacement géographique à toute information ou donnée accroît sa pertinence. La MP3D permet donc à ceux qui détiennent les connaissances de visualiser et de géo référencer leur savoir traditionnel et de nouer un dialogue d’égal à égal avec des étrangers. »

Vous pouvez commander un exemplaire imprimé et télécharger le livre.

Powerful maps: how building 3D models is helping rural communities to make their voices heard

A process of building three-dimensional physical models in a village setting is helping to bring together traditional and modern scientific knowledge to tackle challenges ranging from soil degradation to land use planning, and from forest management to climate change. The technique, known as Participatory 3-dimensional modelling (P3DM) enables marginalised communities to present their territory – together with their own valuable knowledge – in a visual form, offering them the opportunity to protect precious natural resources from outside threats and preserve them for future generations. Some of the field experiences have been published in a new report. The Power of Maps: Bringing the third dimension to the negotiation table is published by the Technical Centre for Agricultural and Rural Cooperation (CTA), which has been in the forefront of promoting the practice across African, Caribbean and Pacific (ACP) countries.

Developed in the early 1990s in Southeast Asia, P3DM is rapidly gaining ground in other parts of the developing world. Participatory 3D models, made out of cardboard and illustrated with coloured paints, pushpins and yarn, portray land cover, such as farmland, rivers and forests, as well as other features, including coastal resources and sea depth. Uniquely, they also depict traditional knowledge, such as ancestral land rights and sacred places. These features are generally supplied by elders in the community, while younger members build the map itself. The result is a free standing relief model which provides tangible evidence of local knowledge, serving as an effective tool for analysis, decision-making, advocacy, action and monitoring.

“Knowledge built up over time and passed from generation to generation represents a unique asset for rural communities when it comes to their land, forest and aquatic resources,” said CTA Director Michael Hailu. “The ability to collate and geo-reference local knowledge and represent it in the form of 3-dimensional maps offers a unique opportunity for local communities to have a voice in decisions on how to sustainably manage their resources.

Often, the process of participatory 3-dimensional modelling is in itself empowering, bringing communities and generations together and helping them to visualise the extent of their resources, and how climate change and other threats, such as mining and deforestation, may be affecting them. Once completed, the physical model remains with the community.

Case studies presented from Ethiopia, Fiji and Madagascar show how P3DM has led to the development of community-driven natural resource management plans. Other examples of P3DM initiatives described in the book demonstrate how the technique can give marginalised rural people a voice to make their case heard. In the Democratic Republic of Congo, the Bambuti-Batwa pygmy community used a P3DM exercise to drive talks on what they claim is the injustice of being evicted from the territory they had inhabited for generations.

Three-dimensional mapping has helped the Kenyan hunter-gatherer Ogiek tribe to document its ancestral land rights and knowledge systems. Meanwhile, In Tobago, a Caribbean island that has suffered a series of extreme climate events in recent years, P3DM has been used to guide community-driven disaster risk reduction strategies.

South-South cooperation is helping to make the practice of participatory 3-dimensional modelling become better known and CTA has been closely involved in efforts to share training and facilitation between Caribbean and Pacific Islands and a range of African countries.

Experiences of P3DM can generate other benefits, such as offering new skills and self-confidence to individuals engaged in the process and funding for communities to implement activities. A case in point is Grenada, where a participatory 3D model had a direct impact on the community that created it, by mobilising donor funding for climate change adaptation on a stretch of the coastline badly affected by hurricane damage.

Participatory 3D modelling, the process documented in this book, has proved to be successful in eliciting substantial amounts of what is termed as tacit knowledge from individuals, to collate individual world views into a shared, visible and tangible representation of collegial knowledge,” said Senior Programme Coordinator Giacomo Rambaldi, who has led CTA’s involvement in P3DM. Adding ‘location’ to any piece of information or datum makes it even more relevant. Hence P3DM enables knowledge holders to visualise and geo-reference their traditional knowledge and to engage outsiders in a peer-to-peer dialogue.”

You can order a hard copy and download the book.


Making Maps, Third Edition: A Visual Guide to Map Design for GIS

Lauded for its accessibility and beautiful design, this text has given thousands of students and professionals the tools to create effective, compelling maps.

Using a wealth of illustrations--with 74 in full color--to elucidate each concisely presented point, the revised and updated third edition of Making Maps: A Visual Guide to Map Design for GIS continues to emphasize how design choices relate to the reasons for making a map and its intended purpose.

All components of map making are covered: titles, labels, legends, visual hierarchy, font selection, how to turn phenomena into visual data, data organization, symbolization, and more.

Innovative pedagogical features include a short graphic novella, good design/poor design map examples, end-of-chapter suggestions for further reading, and an annotated map examplar that runs throughout the book.

by John Krygier PhD (Author), Denis Wood PhD (Author)

Paperback: 293 pages
Publisher: The Guilford Press; 3 edition (August 2, 2016)
Language: English
ISBN-10: 1462509983
ISBN-13: 978-146250998

Monday, August 22, 2016

#12614 – Book Launch and Reception for ‘The power of maps: Bringing the third dimension to the negotiation table’, a CTA Success Stories publication on participatory GIS practice


IUCN World Conservation Congress 2016, Hawai’i, USA, 
Friday, 2 September 2016, 19:30-21:00
Room 314-UNDP Kauhale

Abstract of the session (including reception, drinks and snacks)


This session will see the launch of a collection of 12 impact stories about participatory 3-dimensional modelling (P3DM) – an innovative process that maps traditional knowledge as physical three-dimensional models. P3DM enables marginalised communities to present their territory – together with their own valuable knowledge – in a physical and visual form, offering an opportunity to monitor precious resources against outside threats and preserve them for future generations. It helps to foster sustainable natural resource management, gives a voice to grassroots communities and helps them to influence policy-making and make informed decisions on climate change adaptation. The Power of Maps: Bringing the third dimension to the negotiation table is published by the Technical Centre for Agricultural and Rural Cooperation (CTA), which has been in the forefront of activities to promote the practice across African, Caribbean and Pacific (ACP) countries.

Speakers include those who narrated stories captured in the book and others who have been practicing P3DM across several continents and for diverse purposes.

Objectives of the event

  1. To launch a new CTA publication which is part of the ‘Success stories’ series
  2. To demonstrate the value of participatory mapping in three dimensions and its impact on identity building, informed spatial planning and community engagement
  3. To discuss how best to further upscale the deployment of the process in community-based initiatives

Format and Programme 

The general format of the workshop will be as follows (total time: 90 min):
  • Opening, introduction of speakers and key questions to be addressed (5 minutes)
  • Video address by CTA (3 min)
  • First set of two presentations (7-10 minutes each) (20 minutes)
  • Questions and answers, followed by discussion related to the first set of presentations (15 minutes)
  • Second set of two presentations (7-10 minutes each) (20 minutes)
  • Questions and answers, followed by discussion related to the second set of presentations and for general discussion as well.  (20 minutes)
  • Closing comments (5 min) 

Detailed programme:

19:30-onwards: Reception, serving of snacks and drinks

19:35-19:40 Opening, introduction of speakers and key questions to be addressed Dialogue moderator: Hindou Ibrahim, IPACC West Africa Coordinator

19:40-19:45 Address and introduction of the publication (video link); Giacomo Rambaldi, CTA Senior programme coordinator

19:45-20:05 First set of two presentations:
Senoveva Mauli, Solomon Islands Community Conservation Partnership (SICCP), Solomon Islands
Ana Fekau, Min of Environment in Tonga

20:05-20:20 Q&A and discussion (on first set of presentations)

20:20-20:40 Second set of two presentations
Nigel Crawhall, IPACC, South Africa
M’Lis Flynn, Wet Tropics Management Authority (on private capacity), Australia

20:40-20:55 Q&A and discussion (on second set of questions) Time allowed for general discussion as well.

20:55-21:00 Closing comments and distribution of copies of the publication to participants: Nigel Crawhall, IPACC, South Africa

Download programme






Monday, August 01, 2016

Participatory 3D Modeling exercise with pastoralist communities in Karamoja, Uganda

The Technical Centre for Agricultural and Rural Cooperation ACP-EU (CTA) in partnership with the International Institute of Rural Reconstruction (IIRR), ERMIS Africa, ESIPPS International Ltd and Vision Care Foundation (VCF) supported the implementation of a ‪Participatory‬ 3D Modelling (‪P3DM‬) exercise in Northern ‪Uganda‬, within the ‪‎Karamoja‬ Cluster.

The process took place in the framework of the larger CTA-funded “Building resilient Pastoral Communities through Cross-border Livestock Value Chains in the IGAD region” project.

The P3DM exercise, and specifically its training component benefits also from support provided by the UNDP Equator Initiative which sponsored the participation of the director of the Oromia Pastoralist Association (OPA).

Other organisations which attended the process for capacity building purposes included Communication without borders (CwB), SIKOM PeaceNet Development and delegates from the Endorois and Kayas peoples from Kenya.

Those interested in the process can see a series of pictures on @PGISatCTA Twitter account.

All tweets related to the event include the hashtag ‪#‎p3dmUG‬ 

More importantly CTA commissioned the production of a documentary related to the process which will be available on www.vimeo.com/channels/pgis

Participatory 3D Modeling exercise with pastoralist communities in Karamoja, Uganda - Start following now!

The Technical Centre for Agricultural and Rural Cooperation ACP-EU (CTA) in partnership with the International Institute of Rural Reconstruction (IIRR), ERMIS Africa, ESIPPS International Ltd and Vision Care Foundation (VCF) is supporting the implementation of a ‪Participatory‬ 3D Modelling (‪P3DM‬) exercise in Northern ‪Uganda‬, within the ‪‎Karamoja‬ Cluster.

Karamoja Village, Northern Uganda (CC credit: Swiss Frog, Flickr)
The process takes place in the framework of the larger CTA-funded “Building resilient Pastoral Communities through Cross-border Livestock Value Chains in the IGAD region” project.

The P3DM exercise, and specifically its training component benefits also from support provided by the UNDP Equator Initiative which has sponsored the participation of the director of the Oromia Pastoralist Association (OPA).

Other organisations attending the process for capacity building purposes include Communication without borders (CwB), SIKOM PeaceNet Development and delegates from the Endorois and Kayas peoples from Kenya.

Those interested in the process should follow the @PGISatCTA Twitter account for daily updates.

All tweets related to the event will include the hashtag ‪#‎p3dmUG‬ 

More importantly CTA commissioned the production of a documentary related to the process which will be available on www.vimeo.com/channels/pgis

Thursday, July 28, 2016

Mapping local knowledge to drive sustainable natural resource management, influence policy-making and promote climate change adaptation

A new publication from the Technical Centre for Agricultural and Rural Cooperation (CTA) illustrates how local communities in a range of developing countries have developed a bird’s-eye perspective of their land and water resources through Participatory 3D modelling (P3DM). This innovative technique is proving a valuable tool for often voiceless groups, helping them to manage and protect their habitats, influence decision-making and take control of their future.

Improving natural resource management, mapping community rights and bolstering climate change adaptation – participatory 3D modelling can help to do all this and more. Developed in the early 1990s in Southeast Asia, the technique offers communities a tangible way of visualising tacit knowledge, producing stand-alone relief models that depict natural surroundings, but also cultural information, helping groups to assert their rights and protect their traditional knowledge from outside exploitation.

CTA has been in the forefront of P3DM development in African, Caribbean and Pacific countries, launching it in Fiji, Gabon, Kenya and Trinidad and Tobago, and helping to foster South-South cooperation to spread the practice further afield. The Power of Maps: Bringing the Third Dimension to the Negotiation Table documents some of the achievements obtained so far. All twelve of the case studies presented show how the process of building 3D maps has led to positive changes.

“Traditional knowledge is gaining recognition at the international level, but at the local level, government officials and technocrats tend to dismiss it as anecdotal and scientifically unproven,” said CTA P3DM expert and Senior Programme Coordinator ICT Giacomo Rambaldi. “The process documented in this book enables knowledge holders to visualise and georeference their traditional knowledge and to engage outsiders in a peer-to-peer dialogue.

Building a P3DM model generally involves the entire community, with the elders supplying their traditional knowledge and children taking charge of the actual construction, using cardboard, paints, pushpins and yarn. An important part of the exercise is the way it brings generations together, giving value to the contributions of each and making people feel a sense of pride – in their surroundings and heritage and in the map itself.

On the Pacific island of Ovalau, a P3DM initiative led farmers and fishers to adopt more sustainable land use and fisheries practices, with significant increases in production as a result. Impacts included a doubling of fish stocks, a sizeable increase in crop output and a rise in the number of tourists visiting the island. In Madagascar, the creation of a 3D map drew an initially sceptical community into a watershed planning process, with people quickly seeing the benefits in terms of improved resource management and income generation.

Members of a pygmy community displaced to make way for a protected area in the Democratic Republic of Congo used the web of knowledge displayed on their 3D map to regain access to traditional lands and claim a role in managing them. Meanwhile, in Kenya, a three-dimensional mapping exercise helped the Ogiek tribe to document its ancestral land rights and knowledge systems, with far-reaching repercussions – including shaping government policy on indigenous peoples.

Climate change poses a special threat to vulnerable small island states, and on the Caribbean island of Tobago, P3DM has been used to guide community driven disaster risk reduction strategies. In another three-dimensional mapping exercise in the region, the experience of building a climate risk map of Grenada has produced the added spin-off of strengthening the capacity and professional networks of local organisations. One unexpected outcome has been the signing of an international partnership to fund the replanting of mangroves, as part of an ecosystem management strategy to protect the island from persistent hurricanes that are endangering lives and livelihoods.

Further information:

Watch The enabling power of participatory 3D mapping among the Saramaccan Peoples of Suriname (part 1 & 2):
Visit CTA’s PGIS website
Read about the life-changing effect of P3DM
Known locations of P3DM exercises in Africa, the Caribbean and the Pacific
Collection of case studies: www.iapad.org

P3DM on social media:

www.facebook.com/ppgis
www.twitter.com/ppgis
www.vimeo.com/channels/pgis
www.ppgis.net

Order or download the publication (at no cost - eligibility criteria apply):

English version

Monday, July 11, 2016

Les systèmes d'irrigation des rizières d'Afrique vus du ciel

La technologie des drones procure aux agriculteurs un moyen économique de planifier l'infrastructure. Au Nigeria, elle a permis d'accélérer la planification, la conception et la construction des systèmes d'irrigation des rizières.  

À mesure que le drone, appelés dans le monde anglophone « véhicules aériens sans pilote (UAV) », réapparaît au loin et perd de l'altitude pour se poser, Richard, le chauffeur de l'équipe de chercheurs qui s'est porté volontaire pour apporter son soutien à la mission, court plein d'enthousiasme vers l'avion sans pilote. « Bienvenue ! » s'écrie-t-il en exultant, à la fois en anglais et en haoussa, la langue parlée dans le nord du Nigeria.

L'équipe growmoreX de la société londonienne GMX Consultancy, gestionnaire d'un service applicatif agricole fondé sur les drones, était présente au Nigeria afin de réaliser une étude préalable au développement d'une exploitation rizicole irriguée de 3 000 hectares. L'exploitation occupera un terrain acquis via un bail à long terme signé avec l'administration publique locale chargée de l'irrigation. L'objectif du projet était d'étudier et de cartographier 7 500 hectares afin de préparer la planification et la construction de l'infrastructure d'irrigation des rizières.

Un aéronef piloté aurait coûté une fortune. La technologie des drones était une alternative bien moins coûteuse. Le site étudié dans le cadre du projet était une région à faible densité de population située environ à 75 kilomètres de la ville de New Bussa. Cette région se caractérise par un accès limité aux routes, à l'électricité, à l'eau potable ainsi qu'à d'autres équipements collectifs. La population y vit principalement de petites exploitations agricoles. Les habitants cultivent tous les ans au cours de la saison des pluies du sorgho, du riz et des haricots. Les tomates poussent pendant la saison sèche, grâce à l'irrigation par pompage.

Le premier vol

Un drone à voilure fixe importé directement des États-Unis a été utilisé pour le premier vol. La journée d'assemblage a donné le temps à l'équipe de résoudre les petits problèmes techniques et de comprendre comment utiliser sa fonction de planification automatique de mission.

Une fois tous les contrôles effectués, l'équipe a réglé le système de navigation du drone sur le mode « automatique ». L'hélice du drone s'est mise à tourner et celui-ci a pris son envol, sous les yeux émerveillés d'une foule qui s'était rassemblée pour observer le premier vol. La mission démarrait.

Bien qu'il ait effectué un bon décollage, le drone commença soudain à s'éloigner au lieu de débuter sa mission préprogrammée, probablement en raison de la direction du vent. L'équipe perdit la communication de télémétrie avec le drone et pensa que le drone s'était écrasé.

Mais soudain, la connexion radio avec le drone se rétablit et il entama sa mission de cartographie automatique. Il ne lui fallut que quelques minutes pour atteindre l'altitude de 150 mètres, considérée comme optimale pour son travail d'étude. Une fois arrivé à cette altitude, il se mit à voler selon une trajectoire spécifique, prenant automatiquement des photos pendant son vol.

Une planification précoce

L'appareil photographique fut contrôlé dès l'arrivée du drone sur le sol. Les photos semblaient nettes et de bonne qualité. Il y en avait beaucoup : au cours du vol de 55 minutes, le drone avait pris des photos superposées de quelque 300 hectares.

Le drone pouvait voler environ quatre heures par jour lorsque le soleil projetait le moins d'ombre possible. Dès lors, l'équipe put cartographier environ 1 000 hectares en une seule journée. Le processus est particulièrement rapide, surtout si l'on tient compte du terrain, des conditions de travail difficiles et des températures élevées. On estime qu'il aurait fallu une vingtaine de jours à un géomètre professionnel travaillant à pied pour couvrir la même surface.

Toutefois, faire appel à un drone nécessite de s'y prendre à l'avance. Les chercheurs se sont d'abord assurés qu'aucun règlement spécifique n'empêchait l'équipe d'utiliser ce type d’appareil. L'émir local, le chef du village, ainsi que les responsables d'un aéroport militaire situé à quelque 100 kilomètres du site étudié avaient été informés du projet. Les autorités locales avaient heureusement accueilli favorablement la nouvelle technologie. Une seule condition avait été imposée : l'émir avait insisté pour que son village soit survolé afin que sa population puisse observer le drone et les photos qu'il prendrait.

Le résultat fut inattendu. Pour la première fois, l'équipe a pu établir le nombre exact de maisons et d'habitations dans le village, permettant ainsi aux chercheurs d'effectuer une estimation bien plus précise de sa population. Cette information sera très utile, car l'équipe chargée de l'étude prévoit d'engager de la main-d'œuvre locale pour construire l'exploitation rizicole et la gérer.

Une hypothèse remise en cause

Aussi magnifique qu'ait été le survol du village, le principal objectif était la planification de l'infrastructure d'irrigation de la rizière. En se basant sur les premières études, les chercheurs devaient créer une carte à l'échelle 1:2 000 (1 centimètre de la carte représente 20 mètres). L'objectif de cette carte était que l'équipe prenne des décisions éclairées concernant la meilleure disposition des champs ainsi que des systèmes d'irrigation et de drainage.

En se fondant sur les informations limitées rassemblées à l'issue de visites précédentes du site, l'hypothèse était qu'il serait possible de disposer les rizières sous forme de vastes bassins rectangulaires. Il aurait fallu d'énormes machines de terrassement et du matériel agricole important pour construire et cultiver ces bassins. Les champs destinés à la culture du riz nécessitent une gestion prudente de l'eau car le niveau de l'eau influence la distribution des mauvaises herbes et des nutriments. Cela signifiait que tous les 100 mètres, 50 cm de terre devaient être éliminés en haut du champ afin de surélever sa partie inférieure au cours du processus de nivellement.

Toutefois, l'étude réalisée par le drone a infirmé cette hypothèse. Même s'il était vrai que certaines parties du site concerné étaient plates, la plus grande partie du terrain était vallonnée.

En raison du terrain en pente et de la finesse de la couche supérieure du sol, l'équipe de chercheurs a dû radicalement modifier son hypothèse et oublier la conception en vastes bassins rectangulaires pour opter pour de longs champs étroits qui suivraient les ondulations du terrain. Ce changement impliquait également une conception très différente du système d'irrigation.

Éviter des frais inutiles

À l'aide des données obtenues grâce à la technologie des drones, les planificateurs agricoles peuvent maintenant éviter plus facilement la mauvaise planification de l'infrastructure. Cette information facilite également l'organisation d'un approvisionnement adéquat en termes de matériel, ce qui permet d'éviter les gros investissements de départ inutiles pouvant mener un projet à l'échec.

L'eau est le facteur essentiel en matière d'autosuffisance rizicole en Afrique, où la culture du riz est principalement pluviale. Le manque d'infrastructures d'irrigation constitue un obstacle majeur à l'augmentation de la production rizicole sur le continent. La plupart des systèmes existants sont mal conçus, mal construits et mal entretenus.

Une bonne nouvelle : la technologie des drones peut accélérer la planification, la conception et la construction de l'infrastructure d'irrigation africaine. Comme ce projet l'a démontré, la technologie des drones pourrait offrir aux agriculteurs un moyen économique de planifier cette infrastructure.

Mais ce n'est pas tout. Après l'étape de planification, les drones pourraient être utiles aux exploitants en vue d'estimer avec plus de précision la quantité de fertilisants et de matériaux de plantation nécessaires pendant la période de végétation. Une fois les cultures plantées, des drones équipés de capteurs spéciaux peuvent surveiller leur croissance.

Avec l'aide des drones agricoles, l'Afrique peut se propulser directement à l'ère de l'agriculture de précision en pleine expansion, tout comme les entreprises africaines de mobilophonie ont court-circuité l'infrastructure traditionnelle des lignes fixes pour créer un système innovant de financement mobile.

À propos de l'auteur :

Quan Le (quan.le@gmx.com) est le directeur général de GMX Agri (www.gmxconsulting.co.uk), une entreprise de conseil, de développement et d'opération axée sur l'agriculture africaine.

Source:

Vous pouvez commander une version imprimée ou télécharger une version PDF de ce numéro en suivant ce lien.

Une sélection d'articles sont proposés sur le portail web du magazine : http://ictupdate.cta.int/fr, où vous pouvez vous abonner à la publication gratuitement.




Sunday, July 10, 2016

A bird’s eye view on Africa’s rice irrigation systems

Drone technology provides agriculturists with a cost-effective method of infrastructure planning. In Nigeria it has accelerated the planning, design and construction of rice irrigation systems.

As the drone reappeared in the sky and lowered its altitude in an attempt to land, the research team’s driver Richard, who had been volunteering to help out with the mission, ran towards the unpiloted plane in jubilation. ‘You’re welcome!’ he said enthusiastically in both English and Hausa, the language that is spoken in northern Nigeria.

The growmoreX team of the London based company GMX Consultancy, which runs a drone-based farming application service, was in Nigeria to do a preliminary assessment for the development of a 3,000 hectares irrigated rice farm. The farm will be built on land that was acquired in a long term lease from the local government’s irrigation authority. The aim of the project was to survey and map a total of 7,500 hectares in preparation of planning and building the irrigation infrastructure for the rice fields.

Although a manned aircraft could have done the job, it also would have cost a fortune. The alternative is unmanned aerial vehicle (UAV) technology. The project site was in a sparsely populated area, located approximately 75 kilometres from the town New Bussa, some 700 kilometres away from the capital Abidjan with limited access to roads, electricity, clean water, and other amenities. Local livelihoods here are mainly based on small-scale agriculture. Crops are grown annually during the rainy season, and include sorghum, rice and beans. Tomatoes are grown during the dry season using pump-fed irrigation.

First flight

A fixed-wing UAV, which was imported directly from the US with assistance from a local project partner, was used for the first flight. It took a day to assemble it. That gave the team time to sort out technical hiccups and figure out how to use its automatic mission planning function. The activity attracted attention from local villagers, who had already been informed about the forthcoming agribusiness development.

When all the checks were completed, the team set the UAV’s navigation system to ‘automatic’. Then the UAV’s propeller was turning and it was launched into the air, witnessed by a crowd of people who had gathered to watch the first flight. The mission had begun.

Although the UAV had made it into the air, it suddenly began to fly away instead of starting its pre-programmed mission – likely due to the direction of the wind. The team lost telemetry communication with the drone, and it was thought that the UAV had crashed.

Suddenly, the radio established a connection with the UAV again, and it finally began its automatic mapping mission. It took the UAV only a few minutes to reach the optimal surveying altitude of 150 metres above ground level. Once at this altitude, it began to fly in a specific pattern, shooting images automatically as it went.

Advance planning

After the UAV landed safely the camera was checked immediately. The photos looked sharp and beautiful. There were a lot of them: during the 55-minute flight, the drone took overlapping photos of nearly 300 hectares of land.

The UAV was able to fly for roughly four hours a day when the sun cast the fewest shadows. This meant that the team was able to map about 1,000 hectares in a single day. That is fast, especially if the harsh terrain and working conditions with high temperatures are considered. Estimations assume that it would have taken a professional surveyor working on foot about twenty days to cover the same area.

To operate an UAV requires advance planning. The researchers made sure no specific regulations barred the team from using the UAV. The local Emir, the village chief and a military airport located about 100 kilometres from the project site were informed of the plans to make use of an UAV. Fortunately, the local authorities welcomed the new technology. There was only one condition: the Emir insisted that we do a flyover of his village, so that his people could see both the drone and the pictures it would take.

The village flyover had an unexpected result. For the first time the team could establish exactly how many houses and dwellings there are in the village, thus enabling researchers to make a much better estimation of its population. This information will be very useful, because the research team is planning to hire local labour to build the rice farm and to run it.

The hypothesis was proved wrong

Wonderful as the village flyover was, the main objective was to begin planning the rice farm’s irrigation infrastructure. For the preliminary investigation, the researchers needed to create a map at a scale of 1:2,000 (1 centimetre on the map represents 20 metres). With such a map the research team could make informed decisions on the best layout of the paddy fields, the irrigation and drainage systems.

Based on the limited information from previous visits to the site, it was hypothesised that it would have been able to lay out the rice fields as large, rectangular basins. Large earth moving and farming machinery would have been needed to build and cultivate those basins. Paddy fields for rice cultivation need careful water management as water levels impact weed and nutrient distribution. This meant that for every 100 metres, half a metre of soil at the top of the field had to be removed to raise its lower end during the levelling process.

However, the drone survey proved the hypothesis wrong. Although it was certainly true that parts of the project site were flat, most of the terrain was an undulating landscape.
The sloping terrain combined with a thin top soil layer led the team of researchers to radically change their designed hypothesis, away from large rectangular basins and towards long, narrow fields that would follow the terrain. But this change also meant that a very different irrigation system design was necessary.

Avoiding unnecessary costs

By using data required from UAV technology, agricultural planners can now easier avoid incorrect infrastructural planning. This information also makes it easier to organise the right procurement of machinery, avoiding unnecessary large upfront investments that can break a project if they are improperly planned.

Water is the deciding factor in Africa’s rice self-sufficiency. Most rice cultivation is rain-fed in Africa. The lack of irrigation infrastructure is a major obstacle to increase rice production on the continent. Most of the existing systems are poorly designed, built, and maintained.

The good news is that UAV technology can potentially accelerate the planning, design and construction of Africa's irrigation infrastructure. As this project has shown, UAV technology could provide agriculturists with a cost-effective method of irrigation infrastructure planning.

And that is not all. After the farm planning stage, UAVs could be useful for farmers to estimate more accurately how much fertilizer and planting materials they will need during the growing season. Once crops have been planted, UAVs equipped with special sensors can monitor their growth.

With the help of agricultural UAVs, Africa can leapfrog into the quickly-advancing area of precision agriculture – just as African mobile phone companies bypassed traditional fixed line infrastructure to create an innovative mobile finance system.

About the author:

Quan Le (quan.le@gmx.com) is managing director of GMX Agri, an Africa-focused agriculture adviser, developer and operator. The firm recently launched growmoreX, an UAV-based farming application service. It collaborates with UAV operators in Africa.

Source:

Republished with permission from ICT Update, issue 82, April 2016

Sunday, June 26, 2016

Prévention de l'extension des essaims de criquets pèlerins

Les drones pourraient jouer un rôle décisif en matière d'identification et de prévention des essaims de criquets pèlerins, dans le cadre de la lutte contre ce migrateur dangereux et nuisible. 

Les criquets pèlerins ont un appétit vorace, au point d'être inégalés dans le monde des insectes. Dans leur zone d'activité, soit 20 pour cent de la surface terrestre, ils se reproduisent annuellement, se regroupent, et forment ensuite des essaims pouvant couvrir jusqu'à 150 kilomètres par jour, passant d'un continent à l'autre.

Alors que les essaims de criquets pèlerins sont inconnus en Amérique et en Europe, ils représentent une menace constante pour les ressources alimentaires de certains des pays les plus pauvres et les plus secs au monde, occupant une surface immense s'étendant de l'Afrique de l'Ouest au sous-continent indien. Les pays vulnérables luttent en faisant appel à une technologie de télédétection et d'étude sur le terrain en vue d'identifier et éliminer les zones de reproduction des criquets. Aujourd'hui, certains experts pensent que la technologie des drones, appelés dans le monde anglophone « véhicules aériens sans pilote (UAV) », pourrait offrir aux équipes d'étude et de lutte une solution économique et efficace.

Système d'alerte précoce

Un système d'alerte précoce et de lutte préventive contre les criquets pèlerins existe depuis plus de cinquante ans. C'est le système d'alerte le plus ancien au monde contre les migrateurs nuisibles. Environ vingt-quatre pays concernés ont créé des centres nationaux de lutte contre les criquets au sein de leur gouvernement, regroupant des équipes d'étude et de lutte spécialisées, bien formées, équipées pour parcourir tous les jours le désert dans des 4x4 afin de trouver et traiter les infestations.

Pour les détecter, ces équipes se fondent sur leur propres connaissances ainsi que sur les informations fournies par les nomades. Ces connaissances sont associées à des images satellite actualisées montrant les précipitations et la végétation, ce qui permet aux équipes d'identifier les sites potentiels de reproduction et les infestations de criquets en cours d'expansion. Les équipes enregistrent leurs observations dans une tablette qui transmet les données en temps réel via satellite à leur centre national de lutte contre les criquets. Cette information est ensuite transmise au Desert Locust Information Service (DLIS), installé au siège de l'Organisation des Nations Unies pour l’alimentation et l’agriculture (ONUAA) à Rome, en Italie.

La réussite de la prévention des invasions de criquet pèlerin se fonde sur une surveillance régulière dans le désert, des alertes précoces, et une réaction rapide. Si une invasion n'est pas détectée à temps, cela peut avoir un effet dévastateur sur la subsistance de la population locale. Il a par exemple fallu plus de 500 millions USD et deux années pour contrôler les crises acridiennes de 2003 et 2005 en Afrique du Nord. Quelque 13 millions d'hectares ont été traités avec des pesticides. En ce qui concerne les céréales, des pertes de 100 pour cent ont été rapportées dans certaines régions, et rien qu'en Mauritanie, 60 % des chefs de famille ont dû s'endetter. Au Mali, le niveau d'éducation a chuté car les enfants ont été retirés des écoles en raison de la mauvaise situation économique de leurs parents.

Même si le système d'alerte précoce et de lutte préventive est bien établi et reste efficace au jour le jour, il n'est pas parfait. Actuellement, trois obstacles fondamentaux ont un impact sur ce système : l'énorme étendue et l'éloignement des régions désertiques à explorer, l'insécurité politique croissante, l'inaccessibilité ainsi que les dangers dans ces régions, et enfin l'utilisation fiable des pesticides au cours des opérations de lutte.

Images en haute résolution

L'utilisation de drones pourrait permettre de lever ces obstacles dans de nombreux pays affectés. Sur le terrain, on pourrait utiliser les drones pour collecter automatiquement des images en haute résolution de zones de végétation potentiellement affectées. Commandé par une tablette portative robuste, le drone suivrait un plan de vol préprogrammé couvrant un rayon de 100 kilomètres.

Au terme du vol, les équipes chargées de l'étude pourraient exploiter les données collectées pour identifier les zones les plus susceptibles d'abriter des criquets, ce qui leur permettrait de se rendre directement sur place. Une fois que l'équipe atteint une zone suspecte, le drone pourrait la survoler et identifier d'autres zones proches et nécessitant un traitement. On pourrait ensuite utiliser un drone de lutte séparé pour répandre les pesticides directement sur les concentrations de criquets. Les drones pourraient encore être utilisés pour vérifier la présence de criquets dans des zones peu sûres ou inaccessibles par les équipes de terrain.

Cette solution présente bien des avantages comparée aux méthodes d'étude et de lutte employées actuellement dans les pays touchés par les invasions de criquets. Les études du terrain seraient plus efficaces puisque les équipes ne devraient plus parcourir le désert à l'aveugle en espérant tomber sur des zones de végétation suspectes ou des invasions de criquets.  Les drones permettraient au contraire d'identifier ces zones, ce qui donnerait la possibilité aux équipes d'étude de s'y rendre directement.

Une fois sur place, le drone donnerait une confirmation précise de l'étendue et de la gravité de l'invasion du site. Les opérations de lutte seraient plus sûres et plus efficaces car des opérateurs humains ne seraient plus exposés à des pesticides potentiellement dangereux lors de l'élimination des insectes. Les opérations de lutte contre les parasites deviendraient aussi plus efficaces parce que les drones seraient capables de traiter précisément les invasions, avec la bonne dose de pesticides et la bonne méthode.

Défis à relever

L'introduction des drones dans le système existant §d'alerte précoce et de prévention présente bien des avantages, mais il reste des défis à relever. Il faut d'abord concevoir un drone suffisamment endurant pour couvrir au moins 100 kilomètres en un seul vol, tout en étant chargé de détecteurs optiques capables de différencier une végétation annuelle d'un sol nu. Le système du drone devra ensuite pouvoir traiter et produire les résultats sur le terrain. Étant donné les limitations relatives aux batteries et aux pièces détachées dans les pays en développement, le drone devra fonctionner à l'énergie solaire et être composé de pièces robustes mais simples, facilement disponibles sur les marchés locaux.

Le drone devra aussi pouvoir détecter avec exactitude et fiabilité des taches ou concentrations de criquets sur un site. Un drone de lutte devra pouvoir associer une charge de pesticide potentiellement lourde et une durée de vol relativement longue en vue de traiter le plus possible d'invasions de criquets sur la surface la plus étendue possible.

La commande des drones d'étude et de lutte devra être simple et intuitive car les utilisateurs de terrain disposeront peut-être d’une expertise et de compétences informatiques limitées. Les gouvernements nationaux devront enfin élaborer des cadres juridiques permettant l'utilisation de drones pour des opérations de lutte contre les criquets.

L'ONUAA collabore actuellement avec des chercheurs universitaires et des partenaires du secteur privé en Europe pour répondre à des défis concernant la conception, l'endurance, la puissance, la détection de végétation et de criquets, et le traitement sur place des données en vue d'intégrer la technologie des drones dans les opérations nationales d'étude et de lutte. On s'attend à ce que les premiers essais sur le terrain débutent cette année en Mauritanie pour tester de nouvelles technologies potentielles, les perfectionner, et les adopter en vue d'une utilisation opérationnelle potentielle dans les pays touchés par les invasions de criquets.

L'ONUAA espère que d'ici cinq ans les drones joueront un rôle décisif dans la protection des denrées alimentaires et des moyens de subsistance contre le criquet pèlerin dans le cadre de la lutte contre la faim et la pauvreté mondiales. Cette technologie et les enseignements tirés de l'expérience avec le criquet pèlerin devraient pouvoir être modifiés et adoptés dans le combat contre d'autres maladies et parasites agricoles de par le monde.

À propos de l'auteur :

Keith Cressman (Keith.Cressman@fao.org) est le fonctionnaire principal en charge des prévisions acridiennes au sein du DLIS, ONUAA à Rome, en Italie. Il s'occupe du système global d'alerte précoce acridienne de l'ONUAA.

Liens connexes :



Source:

Vous pouvez commander une version imprimée ou télécharger une version PDF de ce numéro en suivant ce lien.

Une sélection d'articles sont proposés sur le portail web du magazine : http://ictupdate.cta.int/fr, où vous pouvez vous abonner à la publication gratuitement.

Saturday, June 25, 2016

The use of unmanned aerial vehicles to prevent the spread of desert locust swarms

Drones could play an integral role in identifying and preventing desert locust swarms in the fight against this dangerous migratory pest. 

The desert locust is the world's most dangerous migratory pest with a voracious appetite unmatched in the insect world. Within the desert locust's range, which is equivalent to 20% of the earth's land surface, the insects annually reproduce, concentrate and then form swarms that can move up to 150 kilometres per day in search of food.

These swarms are able to migrate across long distances, and can even jump from continent to continent.  A single desert locust swarm the size of Brussels could consume Belgium's entire food supply in a single day.

While desert locust swarms aren't found in the Americas or in Europe, these insects pose a constant threat to food supplies in some of the world's poorest and driest countries, occupying a huge area that stretches from West Africa to the Indian subcontinent. To control these swarms, vulnerable countries use remote sensing technology and ground surveys to identify and eliminate locust breeding areas. Now, some experts think drone technology could provide survey and control teams with an inexpensive and efficient method of searching for these destructive insects.

Early warning system

A global early warning and preventive control system against desert locust has been in place for more than half a century, representing the world's oldest migratory pest warning system. Some two dozen frontline countries have created dedicated national locust centres within their government, consisting of well-trained specialized survey and control teams equipped to scour the desert every day in 4WD vehicles to find and treat infestations.

To find insect infestations, these teams rely on their own knowledge as well as on information from nomads. This knowledge is combined with up-to-date satellite imagery indicating rainfall and green vegetation, allowing the teams to identify potential breeding sites and growing locust infestations. The teams record their observations on a rugged handheld tablet, which transmits the data in real time via satellite to their national locust centre. This information is then passed on to the Desert Locust Information Service (DLIS), based at the headquarters of the Food and Agriculture Organisation (FAO) of the United Nations in Rome, Italy.

The successful prevention of desert locust plagues relies on regular monitoring in the desert, early warning, and timely response. If a local plague is not detected on time it has devastating effects on local livelihoods. For example, it took more than $500 million and two years to control the 2003 and 2005 locust crises in northern Africa. Some 13 million hectares were treated with pesticides. Cereal losses reaching 100% were reported in some areas, and in Mauritania alone, 60% of household heads became indebted. Education levels dropped in Mali, as children were withdrawn from school due to economic pressure.

While the early warning and preventive control system to manage locust plagues is well-established and functions on a daily basis to protect valuable food supplies and livelihoods, it is not perfect. Currently, there are three primary limitations that impact this system: the huge and remote desert areas that must be searched for locust infestations; increasing political insecurity, inaccessibility and dangers within these areas; and the safe use of pesticides during control operations.

High-resolution imagery

The operational use of unmanned aerial vehicles (UAVs) – also known as drones – could potentially overcome these limitations in many affected nations. In the field, UAVs could be used to automatically collect high-resolution imagery of green, vegetated areas potentially affected by locusts. Controlled by a rugged, hand-held tablet, the UAV would follow a pre-programmed flight path, covering a 100 kilometre survey radius.

After the UAV finishes its flight, survey teams would be able to use the data to identify areas that seem most likely to harbour locusts, allowing them to travel directly to suspicious locations. Once the team reaches such an area, the UAV could be launched to hover overhead and identify other, nearby locust infestations that may require treatment. A separate control UAV could then be used to administer pesticides directly onto the locust concentrations. UAVs could also be used to check for locusts in areas that are insecure or cannot be accessed by ground teams.

The above scenario offers a number of advantages, as compared to the survey and control methods currently used in locust-affected countries. Ground surveys would become more efficient, since teams would no longer have to roam the desert in a random manner, hoping to come across suspicious-looking green areas or locust infestations. Instead, UAVs would be able to pinpoint these areas, allowing teams to directly travel to them.

Once in the potentially infested area, the UAV would provide a precise confirmation of the extent and scale of the infestation at that site, which could be several hectares or square kilometres in size. Control operations would become safer and more effective, as human operators would no longer be exposed to potentially dangerous pesticides while eliminating the insects. Pest control operations would also become more effective, since drones would be able to spray infestations precisely, using the correct pesticide dose and methodology.

Remaining challenges

While incorporating UAVs into the existing desert locust early warning and prevention system seems to offer advantages, but several challenges remain. First, an UAV needs to be designed with sufficient endurance to cover at least 100 kilometres in one flight, while carrying optical sensors that can accurately differentiate green annual vegetation from bare ground. The drone system should then be able to process and output these results while in the field. Due to battery and spare parts limitations in developing countries, the UAV should be solar powered, and consist of robust yet simple parts that are easily available in local markets.

The UAV should also be able to accurately detect patches or concentrations of locusts within a single site on a reliable basis. A control UAV will need to be able to balance a potentially bulky pesticide payload with a long flight time, in order to treat the largest number of locust infestations within the greatest amount of area.

Operating both survey and pest control UAVs will have to be simple and intuitive, as users in the field may have only limited expertise and computer skills. Lastly, national governments will need to create legal frameworks that permit the use of drones for locust control operations.

The FAO is currently working with university researchers and private sector partners in Europe to address challenges concerning design, endurance, power, detection of green vegetation and locusts, and in situ data processing in order to incorporate drone technology into national survey and control operations. Initial field trials are expected to commence later this year in Mauritania to test some potential new technology, and to refine and adopt it for eventual operational use in locust-affected countries.

The FAO remains hopeful that within five years, UAVs will play an integral role in protecting food supplies and livelihoods from the desert locust, as part of the fight against global hunger and poverty. It is hoped that this technology and the lessons learned from the desert locust experience can be further modified and adopted for use in combatting other agricultural pests and diseases throughout the world.

About the Author:

Keith Cressman (Keith.Cressman@fao.org) is senior locust forecasting officer at DLIS, FAO in Rome, Italy. He operates FAO’s global desert locust early warning system.

Related Links:


Source:

Republished with permission from ICT Update, issue 82, April 2016

Sunday, June 12, 2016

Les cinq étapes de la création d’une carte au moyen de petits drones

Auparavant, on représentait tous les éléments d’une carte par des symboles dont les caractéristiques spatiales (emplacement, taille, forme) pouvaient être définies mathématiquement dans un système référentiel de coordonnées. On appelait « données vectorielles » les informations spatiales sous-jacentes aux éléments représentés de cette manière. En revanche, depuis l’apparition de la photographie aérienne, on peut désormais également produire des cartes avec des cellules de quadrillage (ou pixels) à chacune desquelles on assigne des valeurs de couleur normalisées, exactement comme pour une image numérique. On appelle « données raster » (ou matricielles) les données utilisées pour produire ce type de carte. Les cartes élaborées à partir des capteurs embarqués à bord des véhicules aériens sans pilote (VASP) ou drones sont dites « sous format matriciel ».

Une carte, au sens traditionnel du terme, doit au minimum répondre aux conditions suivantes : elle doit comporter une échelle et une flèche indiquant le nord, et elle doit offrir un grand degré de cohérence dans la précision des données. De nos jours, au lieu d’utiliser une échelle donnée pour obtenir la résolution souhaitée, les experts utilisent la résolution au sol (Ground sample distance, GSD). Cela représente la largeur et la longueur de la zone couverte au sol par un seul pixel de la mosaïque de capteurs de la caméra. La précision de la carte est donc intimement liée à la GSD. Pour une GSD fixée à 20 centimètres, il ne sera pas possible d’obtenir une mesure des distances entre des points perceptibles au sol plus précise que 20 cm.

Cinq étapes sont nécessaires pour créer une carte au moyen de drones de petite taille :

Étape 1. Conception de la carte et des plans de vol

Afin de s’assurer que la carte sera bien adaptée aux objectifs poursuivis, il importe de déterminer dès le début du processus le type de capteur(s) à utiliser (de lumière visible, de lumière infrarouge, multispectral ou hyperspectral). Une fois le type de capteur déterminé, il faut fixer la GSD adéquate. Plus la résolution au sol diminue et plus la résolution (et la précision) de la carte sera élevée.

Pour évaluer la résolution au sol souhaitée avec un appareil donné, il faut calculer l’altitude de vol correspondante, qui sera fonction de la résolution du ou des capteur(s) et de la distance focale de l’optique de la caméra. La création de cartes à partir d’images doit de plus garantir un recouvrement minimum des photos (exprimé en pourcentage). Pour satisfaire aux exigences en matière de recouvrement, il convient de calculer les intervalles auxquels l’appareil doit se déclencher, ainsi que l’espacement des bandes adjacentes au moyen des dimensions de l’empreinte au sol d’une image.

La Figure 1 illustre le rapport entre, d’une part, la taille et la résolution du capteur ainsi que la distance focale et l’altitude de vol et, d’autre part, la résolution au sol (GSD) et les espacements entre les déclenchements et entre les bandes.

Figure 1 : Paramètres du plan de vol (en mètres)

Par exemple, pour une GSD fixée à 12 millimètres, l’altitude de vol est de 50 mètres, l’appareil doit se déclencher tous les 9,8 mètres dans la bande de vol, et les bandes de vol doivent être espacées de 22 mètres.  
Une fois ces paramètres calculés, on peut mettre au point un plan de vol pour couvrir la zone d’intérêt. Il existe de nombreux outils de conception de plans de vol (gratuits ou payants) pour générer des plans de vol et des plans de tâches numériques de manière quasi automatique qui pourront ensuite être téléchargés sur le drone qui les exécutera alors automatiquement.

Étape 2. Acquisition des images

Afin de permettre l’orientation et la position absolues de la future carte, c’est-à-dire pour géo-référencer cette carte, il est nécessaire de placer sur le terrain des balises de taille et de forme adéquates : ces « Points de contrôle au sol » (PCS) doivent pouvoir être formellement identifiés sur l’imagerie aérienne, et leurs coordonnées dans le système de cartographie de référence souhaité seront mesurées par des méthodes de géomètres.

Dès que les balises PCS sont en place, le plan de vol peut être téléchargé sur le drone pour y être exécuté. Pour un fonctionnement sûr, il convient de procéder à des vérifications de vol et à l’évaluation du terrain avant le lancement du drone. À l’atterrissage, on télécharge le journal de bord et les images aériennes du drone vers un ordinateur portable ou un périphérique de stockage avant de procéder au traitement des images.

Étape 3. Traitement des images 

On associe volontiers la technologie des drones à la production de cartes en haute résolution, mais, sans la technologie de la Structure from Motion (SfM), la révolution cartographique que nous connaissons n’aurait jamais pu avoir lieu. Le degré d’automatisation extrêmement élevé qui caractérise cette technique de cartographie est essentiel pour la démocratisation de la production de cartes.

La première étape de la SfM consiste à aligner les caméras, processus accéléré par l’introduction des positions approximatives des caméras telles qu’enregistrées par le contrôleur de vol du drone. Ces positions approximatives sont également utilisées pour géo-référencer les positions des caméras, ainsi que tous les produits en aval générés par le processus de SfM. Lorsque des PCS (ainsi que leurs coordonnées terrestres) sont nécessaires pour un géoréférencement plus précis, leurs coordonnées-image doivent être visibles dans chaque visuel dans lequel ils apparaissent. Cette étape est généralement la seule intervention manuelle de la procédure de SfM. Dès qu’un modèle de terrain et un atlas de textures ont été produits, on peut générer différents produits géo-spatiaux. En règle générale, sur un ordinateur portable, on peut traiter quelque 500 images de 20MP (couvrant entre 5 et 10 hectares à une résolution au sol entre 10 et 20 millimètres) de grande qualité en l’espace de 24 heures environ.

Étape 4. Préparation et visualisation des produits géo-spatiaux

Une fois le processus de SfM achevé, on peut extraire différents produits géo-spatiaux. Pour une représentation en deux dimensions du terrain, on génère une orthophotographie sur le référentiel et la projection souhaités. On obtient alors une carte raster géo-référencée sans distorsion. Pour ajouter la troisième dimension, on peut générer un modèle altimétrique numérique (MAN) sous format matriciel ou vectoriel. L’association des produits susmentionnés permet des visualisations en 3D extrêmement réalistes, ainsi que des analyses plus ou moins automatiques relatives à la santé de la végétation, la détection de bâtiments, l’évaluation des sols sous l’angle du drainage et de l’irrigation, ou encore au calcul des volumes et de la hauteur des cultures.

Étape 5. L’extraction d’informations essentielles 

Des cartes matricielles véhiculent une quantité impressionnante d’informations, mais la diffusion des volumes de données très importants qu’elles contiennent occuperait une quantité considérable de bande passante. De nombreux logiciels de représentation graphique sont incapables de gérer de tels volumes. Il est donc impératif d’extraire des volumes de données les éléments essentiels pour toute analyse spécifique.

Cette opération est réalisée grâce à l’arpentage virtuel, un processus permettant à l’« arpenteur » de parcourir sans effort le terrain virtuel tout en procédant à des mesures, comme s’il se trouvait sur le terrain. Toutes les données capturées ainsi par l’« arpenteur virtuel » sont sauvegardées sous format vectoriel (format le plus efficace) puis exportées vers un logiciel DAO ou un système d’information géographique (SIG). La possibilité de se livrer à des travaux de topographie virtuels permet d’améliorer considérablement les performances et de réduire les coûts liés aux travaux de cartographie et de topographie. Le travail sur le terrain ne prend plus que quelques heures contre plusieurs semaines auparavant, voire plusieurs mois.

Autres progrès liés à la cartographie par drones

Notons que la cartographie SfM sans PCS est également possible : il suffit alors de connecter un récepteur miniaturisé de système mondial de navigation par satellite (GNSS) à double fréquence à la caméra pour enregistrer le moment précis de chaque déclenchement de l’appareil. De cette manière, les positions de déclenchement peuvent être déterminées de manière très précise, au centimètre près. Certains soutiennent que cette manière de procéder permet de faire l’impasse sur les PCS. De toute évidence, cette nouvelle approche devra faire l’objet de recherches plus approfondies avant de pouvoir convaincre les professionnels de la cartographie.

Enfin, l’émergence de scanners Lidar toujours plus légers constitue un autre progrès important. Le Lidar présente l’avantage unique de pouvoir pénétrer à travers la végétation, ce que n’arrive pas à faire la SfM.

Grâce à ces étapes et ces développements, les cartes numériques peuvent désormais être créées et analysées.

À propos de l’auteur :

Walter Volkmann (walter@unirove.com) préside Micro Aerial Projects L.L.C., une entreprise officielle de mesures géodésiques et cadastrales, spécialisée dans les solutions géo-spatiales.

Source:

Vous pouvez commander une version imprimée ou télécharger une version PDF de ce numéro en suivant ce lien : http://bit.ly/uav4ag-FR

Une sélection d'articles sont proposés sur le portail web du magazine : http://ictupdate.cta.int/fr, où vous pouvez vous abonner à la publication gratuitement.